Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 609: 423-433, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34906914

RESUMEN

Two-point microrheology (TPM) is used to infer material properties of complex fluids from the correlated motion of hydrodynamically interacting probes embedded in the medium. The mechanistic connection between probe motion and material properties is propagation of disturbance flows, encoded in current TPM theory for unconfined materials. However, confined media e.g. biological cells and particle-laden droplets, require theory that encodes confinement into the flow propagator (Green's function). To test this idea, we use Confined Stokesian Dynamics simulations to explicitly represent many-body hydrodynamic couplings between colloids and with the enclosing cavity at arbitrary concentration and cavity size. We find that previous TPM theory breaks down in confinement, and we identify and replace the underlying key elements. We put forth a Confined Generalized Stokes-Einstein Relation and report the viscoelastic spectrum. We find that confinement alters particle dynamics and increases viscosity, owing to hydrodynamic and entropic coupling with the cavity. The new theory produces a master curve for all cavity sizes and concentrations and reveals that for colloids larger than 0.005 times the enclosure size, the new model is required.


Asunto(s)
Coloides , Modelos Químicos , Hidrodinámica , Movimiento (Física) , Viscosidad
2.
Macromolecules ; 54(4): 1783-1800, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33981120

RESUMEN

We develop a scaling theory that predicts the dynamics of symmetric and asymmetric unentangled liquid coacervates formed by solutions of oppositely-charged polyelectrolytes. Symmetric coacervates made from oppositely-charged polyelectrolytes consist of polycations and polyanions with equal and opposite charge densities along their backbones. These symmetric coacervates can be described as mixtures of polyelectrolytes in the quasi-neutral regime with a single correlation length. Asymmetric coacervates are made from polycations and polyanions with unequal charge densities. The difference in charge densities results in a double semidilute structure of asymmetric coacervates with two correlation lengths, one for the high-charge-density and the other for the low-charge-density polyelectrolytes. We predict that the double-semidilute structure in asymmetric coacervates results in a dynamic coupling which increases the friction of the high-charge-density polyelectrolyte. This dynamic coupling increases the contribution to the zero-shear viscosity of the high-charge-density polyelectrolyte. The diffusion coefficient of the high-charge-density polyelectrolyte is predicted to depend on the concentration and degree of polymerization of the low-charge-density polyelectrolyte in the coacervate if the size of the low-charge-density polymer is smaller than the correlation length of the high-charge-density polymer. We also predict a non-monotonic salt concentration dependence of the zero-shear viscosity of asymmetric coacervates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA