Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 6(8): e04550, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32885063

RESUMEN

Gentle Remediation Options (GROs), such as biostimulation, bioaugmentation, phytoremediation and vermiremediation, are cost-effective and environmentally-friendly solutions for soils simultaneously polluted with organic and inorganic compounds. This study assessed the individual and combined effectiveness of GROs in recovering the health of a soil artificially polluted with hexavalent chromium [Cr(VI)] and lindane. A greenhouse experiment was performed using organically-amended vs. non-amended mixed polluted soils. All soils received the following treatments: (i) no treatment; (ii) bioaugmentation with an actinobacteria consortium; (iii) vermiremediation with Eisenia fetida; (iv) phytoremediation with Brassica napus; (v) bioaugmentation + vermiremediation; (vi) bioaugmentation + phytoremediation; and (vii) bioaugmentation + vermiremediation + phytoremediation. Soil health recovery was determined based on Cr(VI) and lindane concentrations, microbial properties and toxicity bioassays with plants and worms. Cr(VI) pollution caused high toxicity, but some GROs were able to partly recover soil health: (i) the organic amendment decreased Cr(VI) concentrations, alleviating toxicity; (ii) the actinobacteria consortium was effective at removing both Cr(VI) and lindane; (iii) B. napus and E. fetida had a positive effect on the removal of pollutants and improved microbial properties. The combination of the organic amendment, B. napus, E. fetida and the actinobacteria consortium was the most effective strategy.

2.
J Environ Manage ; 276: 111309, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32882521

RESUMEN

The scaling-up of lindane-contaminated soils bioremediation from microcosms to mesocosms bioaugmentated with an actinobacteria quadruple culture and biostimulated with sugarcane filter cake (SCFC) was surveyed. Mesocosms of silty loam soil, clayey soil, and sandy soil were polluted with the pesticide, bioaugmented with the mixed culture, biostimulated with adequate amounts of 0.5 mm SCFC particles, and assessed during 63 days maintaining environmental parameters with minimal intervention. Samples were taken to determine residual lindane, heterotrophic microorganisms, enzymatic activities, and bioremediation effectiveness using ecotoxicity tests with Raphanus sativus, Lactuca sativa, and Lycopersicon esculentum. The bioaugmentation and biostimulation of the three soils improved lindane removal, microbial counts, and enzymatic activities, and reduced pesticide T1/2, regarding the values obtained in non-bioremediated controls. The removal process was significantly affected by the soil type, and the highest pesticide dissipation (82.6%) was detected in bioremediated sandy soil. Ecotoxicity tests confirmed the bioremediation success through a rise in the vigor index of seedlings compared to non-treated soils (R. sativus: 12-22%; L. sativa: 12-20%; L. esculentum: 30-45%). Finally, scanning electron microscopy corroborated soil colonization by actinobacteria. Successful scaling-up of the combined application of an actinobacteria quadruple culture and SCFC as an appropriate strategy for restoring lindane-polluted soils at mesocosms-scale was confirmed.


Asunto(s)
Hexaclorociclohexano , Contaminantes del Suelo , Biodegradación Ambiental , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
3.
Ecotoxicol Environ Saf ; 190: 110143, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31918254

RESUMEN

Lindane is a toxic and persistent organochlorine pesticide, whose extensive use generated its accumulation in different environmental matrices. Bioremediation is a promising technology that can be used combining bioaugmentation and biostimulation processes to soil restoration. The aim of the present work was to determine the conditions of maximum lindane removal by bioaugmentation with an actinobacteria consortium and biostimulation with sugarcane filter cake (SCFC). The assays were carried out on lindane-contaminated silty loam (SLS), clayey (CS), and sandy (SS) soils. Through complete factorial designs, the effects of three abiotic factors (moisture content, proportion and size of SCFC particles) were evaluated on lindane removal. In addition, a response optimizer determined the optimal conditions for pesticide removal in bioaugmented and biostimulated soils, in the range of levels studied for each factor. In these conditions, bioaugmentation of biostimulated soils increased the pesticide removal (SLS: 61.4%, CS: 70.8%, SS: 86.3%), heterotrophic microbial counts, and soil enzymatic activities, and decreased lindane T1/2, regarding the non-bioaugmented biostimulated controls, after 14 days of assay. The values of these parameters confirmed the efficiency of the bioremediation process. Finally, the viability of the four strains was demonstrated at the end of the assay. The results indicate that the simultaneous application of bioaugmentation with the actinobacteria consortium and biostimulation with SCFC constitutes a promising tool for restoring soils contaminated with lindane, by using the optimal conditions obtained through the factorial designs.


Asunto(s)
Biodegradación Ambiental , Hexaclorociclohexano/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Actinobacteria , Bacterias , Hexaclorociclohexano/análisis , Plaguicidas , Saccharum , Suelo , Contaminantes del Suelo/análisis
4.
Chemosphere ; 238: 124512, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31430718

RESUMEN

Lindane is an organochlorine pesticide that, due to its persistence in the environment, is still detected in different matrices. Bioremediation using actinobacteria consortia proved to be promising for the restoration of contaminated soils. Another alternative to remove xenobiotics is to use agricultural residues, which stimulates microbial activity, increasing its capacity to degrade organic pollutants. The present work studies the coupling of sugarcane bagasse biostimulation and bioaugmentation with the actinobacteria consortium composed of Streptomyces sp. A2, A5, A11 and M7 on lindane removal in different soil types. In this sense, factorial designs with three factors (proportion and size of sugarcane bagasse particles, and moisture content) were employed. A response optimizer identified the combination of factors levels that jointly allowed obtaining the maximum lindane removal in the evaluated conditions. In the optimal conditions, the effect of the bioremediation process on soil microbiota was studied by evaluating different parameters. The highest lindane removal percentages were detected in biostimulated microcosms bioaugmented with the microbial consortium, which were accompanied by a decrease in lindane half-life respect to the controls. Also, the bioaugmentation of biostimulated microcosms increased the microbial counts and enhanced soil enzymatic activities, corroborating the bioremediation process efficiency. The survival of the four actinobacteria at the end of the assay confirmed the ability of all Streptomyces strains to colonize amended soils. Bioremediation by simultaneous application of biostimulation with sugarcane bagasse and bioaugmentation with the actinobacteria consortium, in the optimized conditions, represents an efficient strategy to restore lindane contaminated soils.


Asunto(s)
Hexaclorociclohexano/aislamiento & purificación , Hexaclorociclohexano/metabolismo , Contaminantes del Suelo/aislamiento & purificación , Contaminantes del Suelo/metabolismo , Suelo/química , Streptomyces/efectos de los fármacos , Streptomyces/metabolismo , Biodegradación Ambiental/efectos de los fármacos , Celulosa/química , Celulosa/farmacología , Consorcios Microbianos/efectos de los fármacos , Saccharum/química
5.
Chemosphere ; 181: 478-484, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28460294

RESUMEN

The use of living actinobacteria biomass to clean up contaminated soils is an attractive biotechnology approach. However, biomass generation from cheap feedstock is the first step to ensure process sustainability. The present work reports the ability of four actinobacteria, Streptomyces sp. M7, MC1, A5, and Amycolatopsis tucumanensis, to generate biomass from sugarcane vinasse. Optimal vinasse concentration to obtain the required biomass (more than 0.4 g L-1) was 20% for all strains, either grown individually or as mixed cultures. However, the biomass fraction recovered from first vinasse was discarded as it retained trace metals present in the effluent. Fractions recovered from three consecutive cycles of vinasse re-use obtained by mixing equal amounts of biomass from single cultures or produced as a mixed culture were evaluated to clean up contaminated soil with lindane and chromium. In all cases, the decrease in pesticide was about 50% after 14 d of incubation. However, chromium removal was statistically different depending on the preparation methodology of the inoculum. While the combined actinobacteria biomass recovered from their respective single cultures removed about 85% of the chromium, the mixed culture biomass removed more than 95%. At the end of the reused vinasse cycle, the mixed culture removed more than 70% of the biological oxygen demand suggesting a proportional reduction in the effluent toxicity. These results represent the first integral approach to address a problematic of multiple contaminations, concerning pesticides, heavy metals and a regionally important effluent like vinasse.


Asunto(s)
Actinobacteria/metabolismo , Biomasa , Restauración y Remediación Ambiental/métodos , Saccharum/microbiología , Actinobacteria/crecimiento & desarrollo , Análisis de la Demanda Biológica de Oxígeno , Cromo/aislamiento & purificación , Contaminación Ambiental/prevención & control , Hexaclorociclohexano/aislamiento & purificación , Plaguicidas , Suelo/química , Streptomyces/metabolismo
6.
Chemosphere ; 144: 842-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26421623

RESUMEN

Vinasse is a complex effluent created during production of ethyl alcohol, which can present serious pollution hazard in areas where it is discharged. A variety of technologies, many based upon recovery of the effluent via microbial pathways, are continually being evaluated in order to mitigate the pollution potential of vinasse. The present work reports on initial advances related to the effectiveness of the actinobacterium Streptomyces sp. MC1 for vinasse treatment. Alternative use of raw vinasse as a substrate for producing metabolites of biotechnological interest such as bioemulsifiers, was also evaluated. The strain was able to grow at very high vinasse concentrations (until 50% v/v) and remove over 50% of the biodegradable organic matter in a time period as short as 4 d. Potentially toxic metals such as Mn, Fe, Zn, As, and Pb were also effectively removed during bacterial growth. Decrease in the pollution potential of treated vinasse compared to raw effluent, was reflected in a significant increase in the vigour index of Lactuca sativa (letucce) used as bioremediation indicator. Finally, significant bioemulsifier production was detected when this strain was incubated in a vinasse-based culture medium. These results represent the first advances on the recovery and re-valuation of an actual effluent, by using an actinobacterium from our collection of cultures.


Asunto(s)
Emulsionantes , Contaminantes Ambientales/aislamiento & purificación , Residuos Industriales , Streptomyces/crecimiento & desarrollo , Eliminación de Residuos Líquidos/métodos , Biodegradación Ambiental , Emulsionantes/química , Emulsionantes/metabolismo , Contaminantes Ambientales/toxicidad , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Streptomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA