Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Graph Model ; 122: 108460, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37004417

RESUMEN

An intense absorption, phosphorescence, a long triplet excited state lifetime and singlet oxygen generation capabilities are characteristics of pyranoflavylium cations, analogues to pyranoanthocyanidins originated in the maturation process of red wine. Such properties make these compounds potential photosensitizers to be applied in photodynamic therapy. In this context, the photophysical processes underlying that treatment critically depend on the electronic structure of the pyranoflavylium molecules. When employing density functional theory to describe the electronic structure of molecules, the choice of the most suitable functional is not trivial, and benchmark studies are needed to orient practitioners in the field. In this work, a benchmark of seven of the most commonly used density functionals in addressing the photophysical properties of a set of eight pyranoflavylium cations is reported. Ground and excited state geometries, molecular orbitals, and absorption, fluorescence and phosphorescence transition energies were calculated using density functional theory approaches, and evaluated and compared to experimental data and monoreferential wave function-based methodologies. Statistical analysis of the results indicates that global-hybrid functionals allow an excellent description of absorption and emission energies, with errors around 0.05 eV, while range-separated variants led to somewhat larger errors in the range 0.1-0.2 eV. In contrast, range-separated functionals display excellent phosphorescence energies with errors close to 0.05 eV, in this case global-hybrids showing increased discrepancies around 0.5-0.1 eV.


Asunto(s)
Benchmarking , Teoría Cuántica , Cationes
2.
J Chem Theory Comput ; 13(11): 5291-5316, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-28953375

RESUMEN

With the objective of analyzing which kind of reference data is appropriate for benchmarking quantum chemical approaches for transition metal compounds, we present the following, (a) a collection of 60 transition metal diatomic molecules for which experimentally derived dissociation energies, equilibrium distances, and harmonic vibrational frequencies are known and (b) a composite computational approach based on coupled-cluster theory with basis set extrapolation, inclusion of core-valence correlation, and corrections for relativistic and multireference effects. The latter correction was obtained from internally contracted multireference coupled-cluster (icMRCC) theory. This composite approach has been used to obtain the dissociation energies and spectroscopic constants for the 60 molecules in our data set. In accordance with previous studies on a subset of molecules, we find that multireference corrections are rather small in many cases and CCSD(T) can provide accurate reference values, if the complete basis set limit is explored. In addition, the multireference correction improves the results in cases where CCSD(T) is not a good approximation. For a few cases, however, strong deviations from experiment persist, which cannot be explained by the remaining error in the computational approach. We suggest that these experimentally derived values require careful revision. This also shows that reliable reference values for benchmarking approximate computational methods are not always easily accessible via experiment and accurate computations may provide an alternative way to access them. In order to assess how the choice of reference data affects benchmark studies, we tested 10 DFT functionals for the molecules in the present data set against experimental and calculated reference values. Despite the differences between these two sets of reference values, we found that the ranking of the relative performance of the DFT functionals is nearly independent of the chosen reference.

3.
J Chem Phys ; 135(4): 044308, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21806120

RESUMEN

Extensive ab initio calculations using a complete active space second-order perturbation theory wavefunction, including scalar and spin-orbit relativistic effects with a quadruple-zeta quality basis set were used to construct an analytical potential energy surface (PES) of the ground state of the [H, O, I] system. A total of 5344 points were fit to a three-dimensional function of the internuclear distances, with a global root-mean-square error of 1.26 kcal mol(-1). The resulting PES describes accurately the main features of this system: the HOI and HIO isomers, the transition state between them, and all dissociation asymptotes. After a small adjustment, using a scaling factor on the internal coordinates of HOI, the frequencies calculated in this work agree with the experimental data available within 10 cm(-1).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA