Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 8812, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31217434

RESUMEN

Acquisitions of the Sentinel-1 satellite are processed and comprehensively analyzed to investigate the ground displacement during a three-year period above a double gas storage site (Lussagnet and Izaute) in Southwestern France. Despite quite low vertical displacements (between 4 and 8 mm) compared to the noise level, the cyclic motion reflects the seasonal variations due to charge and discharge during summer and winter periods, respectively. We can simulate the ground deformation at both storage sites by a simple mechanical model. However, ground movements of low-magnitude may be also induced by natural factors, such as the temperature or the soil moisture. Using a wavelet-based analysis, we show there is a soil expansion in the Lussagnet zone that contrasts both in phase and period with the seasonal deformation and that is linked to the surface soil moisture measured by the SMOS satellite. This other displacement is consistent with the water infiltration in the unsaturated zone followed by the swelling of a clay layer. This work reveals the combination of two different processes driving the ground displacement with the same order of magnitude (about 6 mm), namely the pressure variation of a deep gas reservoir and the swelling/shrinking of the shallow subsurface.

2.
Sci Rep ; 8(1): 6032, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29662122

RESUMEN

This study focuses on the shallow deformation that occurred during the 5 years following the Parkfield earthquake (28/09/2004, Mw 6, San Andreas Fault, California). We use Synthetic Aperture Radar interferometry (InSAR) to provide precise measurements of transient deformations after the Parkfield earthquake between 2005 and 2010. We propose a method to combine both ERS2 and ENVISAT interferograms to increase the temporal data sampling. Firstly, we combine 5 years of available Synthetic Aperture Radar (SAR) acquisitions including both ERS-2 and Envisat. Secondly, we stack selected interferograms (both from ERS2 and Envisat) for measuring the temporal evolution of the ground velocities at given time intervals. Thanks to its high spatial resolution, InSAR could provide new insights on the surface fault motion behavior over the 5 years following the Parkfield earthquake. As a complement to previous studies in this area, our results suggest that shallow transient deformations affected the Creeping-Parkfield-Cholame sections of the San Andreas Fault after the 2004 Mw6 Parkfield earthquake.

3.
PLoS One ; 12(9): e0185422, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28961264

RESUMEN

We utilize L-band interferometric synthetic aperture radar (InSAR) data in this study to retrieve a ground velocity map for the near field of the Ganos section of the north Anatolian fault (NAF) zone. The segmentation and creep distribution of this section, which last ruptured in 1912 to generate a moment magnitude (Mw)7.3 earthquake, remains incompletely understood. Because InSAR processing removes the mean orbital plane, we do not investigate large scale displacements due to regional tectonics in this study as these can be determined using global positioning system (GPS) data, instead concentrating on the close-to-the-fault displacement field. Our aim is to determine whether, or not, it is possible to retrieve robust near field velocity maps from stacking L-band interferograms, combining both single and dual polarization SAR data. In addition, we discuss whether a crustal velocity map can be used to complement GPS observations in an attempt to discriminate the present-day surface displacement of the Ganos fault (GF) across multiple segments. Finally, we characterize the spatial distribution of creep on shallow patches along multiple along-strike segments at shallow depths. Our results suggest the presence of fault segmentation along strike as well as creep on the shallow part of the fault (i.e. the existence of a shallow creeping patch) or the presence of a smoother section on the fault plane. Data imply a heterogeneous fault plane with more complex mechanics than previously thought. Because this study improves our knowledge of the mechanisms underlying the GF, our results have implications for local seismic hazard assessment.


Asunto(s)
Terremotos , Interferometría/métodos , Radar , Turquía
4.
J Seismol ; 20(4): 1089-1105, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28190967

RESUMEN

We study the ground motion simulations based on three finite-source models for the 2007 Mw6.6 Niigata Chuetsu-oki, Japan, earthquake in order to discuss the performance of the input ground motion estimations for the near-field seismic hazard analysis. The three models include a kinematic source inverted from the regional accelerations, a dynamic source on a planar fault with three asperities inferred from the very-near-field ground motion particle motions, and another dynamic source model with conjugate fault segments. The ground motions are calculated for an available 3D geological model using a finite-difference method. For the comparison, we apply a goodness-of-fit score to the ground motion parameters at different stations, including the nearest one that is almost directly above the ruptured fault segments. The dynamic rupture models show good performance. We find that seismologically inferred earthquake asperities on a single fault plane can be expressed with two conjugate segments. The rupture transfer from one segment to another can generate a significant radiation; this could be interpreted as an asperity projected onto a single fault plane. This example illustrates the importance of the fault geometry that has to be taken into account when estimating the very-near-field ground motion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA