Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(4-1): 044314, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38755838

RESUMEN

Ensembles of coupled nonlinear oscillators are a popular paradigm and an ideal benchmark for analyzing complex collective behaviors. The onset of cluster synchronization is found to be at the core of various technological and biological processes. The current literature has investigated cluster synchronization by focusing mostly on the case of attractive coupling among the oscillators. However, the case of two coexisting competing interactions is of practical interest due to their relevance in diverse natural settings, including neuronal networks consisting of excitatory and inhibitory neurons, the coevolving social model with voters of opposite opinions, and ecological plant communities with both facilitation and competition, to name a few. In the present article, we investigate the impact of repulsive spanning trees on cluster formation within a connected network of attractively coupled limit-cycle oscillators. We successfully predict which nodes belong to each cluster and the emergent frustration of the connected networks independent of the particular local dynamics at the network nodes. We also determine local asymptotic stability of the cluster states using an approach based on the formulation of a master stability function. We additionally validate the emergence of solitary states and antisynchronization for some specific choices of spanning trees and networks.

2.
Phys Rev E ; 109(1-1): 014225, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38366474

RESUMEN

Self-organized bistability (SOB) stands as a critical behavior for the systems delicately adjusting themselves to the brink of bistability, characterized by a first-order transition. Its essence lies in the inherent ability of the system to undergo enduring shifts between the coexisting states, achieved through the self-regulation of a controlling parameter. Recently, SOB has been established in a scale-free network as a recurrent transition to a short-living state of global synchronization. Here, we embark on a theoretical exploration that extends the boundaries of the SOB concept on a higher-order network (implicitly embedded microscopically within a simplicial complex) while considering the limitations imposed by coupling constraints. By applying Ott-Antonsen dimensionality reduction in the thermodynamic limit to the higher-order network, we derive SOB requirements under coupling limits that are in good agreement with numerical simulations on systems of finite size. We use continuous synchronization diagrams and statistical data from spontaneous synchronized events to demonstrate the crucial role SOB plays in initiating and terminating temporary synchronized events. We show that under weak-coupling consumption, these spontaneous occurrences closely resemble the statistical traits of the epileptic brain functioning.

3.
Phys Rev E ; 108(5-1): 054208, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38115438

RESUMEN

In a predator-prey metapopulation, two traits are adversely related: synchronization and persistence. A decrease in synchrony apparently leads to an increase in persistence and, therefore, necessitates the study of desynchrony in a metapopulation. In this article, we study predator-prey patches that communicate with one another while being interconnected through distinct dispersal structures in the layers of a three-layer multiplex network. We investigate the synchronization phenomenon among the patches of the outer layers by introducing higher-order interactions (specifically three-body interactions) in the middle layer. We observe a decrease in the synchronous behavior or, alternatively, an increase in desynchrony due to the inclusion of group interactions among the patches of the middle layer. The advancement of desynchrony becomes more prominent with increasing strength and numbers of three-way interactions in the middle layer. We analytically validate our numerical results by performing a stability analysis of the referred synchronous solution using the master stability function approach. Additionally, we verify our findings by taking into account two distinct predator-prey models and dispersal topologies, which ultimately supports that the findings are generalizable across various models and dispersal structures.

4.
Chaos ; 33(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37408147

RESUMEN

A potential issue of interest is figuring out how the combination of temporal and higher-order interactions influences the collective dynamics of the brain, specifically, neuronal synchronization. Motivated by this, here we consider an ensemble of neurons interacting with each other through gap junctions, modeled by temporal higher-order networks (simplicial complexes), and study the emergence of complete neuronal synchronization. We find that the critical synaptic strength for achieving neuronal synchronization with time-varying higher-order interaction is relatively lower than that with temporal pairwise interactions or static many-body interactions. Our study shows that neuronal synchronization can occur even in the sole presence of higher-order, time-varying interactions. We also find that the enhancement in neuronal synchronization in temporal higher-order structure is highly related to the density of group interactions among the neurons. Furthermore, to characterize the local stability of the synchronous solution, we use the master stability function approach, which shows that the numerical findings are in good agreement with the analytically derived conditions.

5.
Entropy (Basel) ; 25(7)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37510030

RESUMEN

Heterogeneity among interacting units plays an important role in numerous biological and man-made complex systems. While the impacts of heterogeneity on synchronization, in terms of structural mismatch of the layers in multiplex networks, has been studied thoroughly, its influence on intralayer synchronization, in terms of parameter mismatch among the layers, has not been adequately investigated. Here, we study the intralayer synchrony in multiplex networks, where the layers are different from one other, due to parameter mismatch in their local dynamics. In such a multiplex network, the intralayer coupling strength for the emergence of intralayer synchronization decreases upon the introduction of impurity among the layers, which is caused by a parameter mismatch in their local dynamics. Furthermore, the area of occurrence of intralayer synchronization also widens with increasing mismatch. We analytically derive a condition under which the intralayer synchronous solution exists, and we even sustain its stability. We also prove that, in spite of the mismatch among the layers, all the layers of the multiplex network synchronize simultaneously. Our results indicate that a multiplex network with mismatched layers can induce synchrony more easily than a multiplex network with identical layers.

6.
Phys Rev E ; 107(1-1): 014201, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36797861

RESUMEN

A long-standing expectation is that two repulsively coupled oscillators tend to oscillate in opposite directions. It has been difficult to achieve complete synchrony in coupled identical oscillators with purely repulsive coupling. Here, we introduce a general coupling condition based on the linear matrix of dynamical systems for the emergence of the complete synchronization in pure repulsively coupled oscillators. The proposed coupling profiles (coupling matrices) define a bidirectional cross-coupling link that plays the role of indicator for the onset of complete synchrony between identical oscillators. We illustrate the proposed coupling scheme on several paradigmatic two-coupled chaotic oscillators and validate its effectiveness through the linear stability analysis of the synchronous solution based on the master stability function approach. We further demonstrate that the proposed general condition for the selection of coupling profiles to achieve synchronization even works perfectly for a large ensemble of oscillators.

7.
Phys Rev E ; 106(3-1): 034314, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36266849

RESUMEN

Understanding how the interplay between higher-order and multilayer structures of interconnections influences the synchronization behaviors of dynamical systems is a feasible problem of interest, with possible application in essential topics such as neuronal dynamics. Here, we provide a comprehensive approach for analyzing the stability of the complete synchronization state in simplicial complexes with numerous interaction layers. We show that the synchronization state exists as an invariant solution and derive the necessary condition for a stable synchronization state in the presence of general coupling functions. It generalizes the well-known master stability function scheme to the higher-order structures with multiple interaction layers. We verify our theoretical results by employing them on networks of paradigmatic Rössler oscillators and Sherman neuronal models, and we demonstrate that the presence of group interactions considerably improves the synchronization phenomenon in the multilayer framework.

8.
Chaos ; 32(3): 033125, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35364852

RESUMEN

Recent developments in complex systems have witnessed that many real-world scenarios, successfully represented as networks, are not always restricted to binary interactions but often include higher-order interactions among the nodes. These beyond pairwise interactions are preferably modeled by hypergraphs, where hyperedges represent higher-order interactions between a set of nodes. In this work, we consider a multiplex network where the intralayer connections are represented by hypergraphs, called the multiplex hypergraph. The hypergraph is constructed by mapping the maximal cliques of a scale-free network to hyperedges of suitable sizes. We investigate the intralayer and interlayer synchronizations of such multiplex structures. Our study unveils that the intralayer synchronization appreciably enhances when a higher-order structure is taken into consideration in spite of only pairwise connections. We derive the necessary condition for stable synchronization states by the master stability function approach, which perfectly agrees with the numerical results. We also explore the robustness of interlayer synchronization and find that for the multiplex structures with many-body interaction, the interlayer synchronization is more persistent than the multiplex networks with solely pairwise interaction.

9.
Phys Rev E ; 105(2-1): 024303, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35291066

RESUMEN

The stability analysis of synchronization patterns on generalized network structures is of immense importance nowadays. In this article, we scrutinize the stability of intralayer synchronous state in temporal multilayer hypernetworks, where each dynamic units in a layer communicate with others through various independent time-varying connection mechanisms. Here, dynamical units within and between layers may be interconnected through arbitrary generic coupling functions. We show that intralayer synchronous state exists as an invariant solution. Using fast-switching stability criteria, we derive the condition for stable coherent state in terms of associated time-averaged network structure, and in some instances we are able to separate the transverse subspace optimally. Using simultaneous block diagonalization of coupling matrices, we derive the synchronization stability condition without considering time-averaged network structure. Finally, we verify our analytically derived results through a series of numerical simulations on synthetic and real-world neuronal networked systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA