Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38139821

RESUMEN

Candida albicans and non-albicans Candida species are a common cause of human mucosal infections, as well as bloodstream infections and deep mycoses. The emergence of resistance of Candida spp. to antifungal drugs used in practice requires the search for new antimycotics. The present study unravels the antifungal potential of the synthetic dialk(en)ylthiosulfinates in comparison with an enzymatic in situ methionine γ-lyase-based thiosulfinate generation system (TGS). The kinetics of the TGS reaction, namely, the methionine γ-lyase-catalyzed ß-elimination of S-alk(en)yl-L-cysteine sulfoxides, was investigated via 1H NMR spectroscopy for the first time, revealing fast conversion rates and the efficient production of anticandidal dialk(en)ylthiosulfinates. The anticandidal potential of this system vs. synthetic thiosulfinates was investigated through an in vitro assay. TGS proved to be more effective (MIC range 0.36-1.1 µg/mL) than individual substances (MIC range 0.69-3.31 µg/mL). The tested preparations had an additive effect with the commercial antimycotics fluconazole, amphotericin B and 5-flucytosine demonstrating a fractional inhibitory coefficient index in the range of 0.5-2 µg/mL. TGS can be regarded as an attractive candidate for the targeted delivery of antimycotic thiosulfinates and for further implementation onto medically implanted devices.

2.
Biochimie ; 201: 157-167, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35691533

RESUMEN

Methionine γ-lyase (MGL) is a pyridoxal 5'-phosphate-dependent enzyme catalyzing γ-elimination in l-methionine. Pyridoxal 5'-phosphate-dependent enzymes have unique spectral properties that allow to monitor sequential formation and decomposition of various intermediates via the detection of absorbance changes. The kinetic mechanism of the γ-elimination reaction catalyzed by Citrobacter freundii MGL was elucidated here by fast stopped-flow kinetic analysis. Single-wavelength detection of characteristic absorbance changes enabled us to compare transformations of intermediates in the course of the reaction with different substrates. The influence of various γ-substituents in the substrate on the formation of key intermediates was estimated. Kinetic isotope effects of α- and ß-protons were determined using deuterium-substituted l-methionine. Contributions of amino acid residues Tyr113 and Tyr58 located in the active site on the formation and decomposition of reaction intermediates were identified too. α-Aminocrotonate formation is the rate-limiting step of the enzymatic γ-elimination reaction. Kinetic isotope effects strongly support concerted reaction mechanisms of transformation between an external aldimine and a ketimine intermediate as well as a ketimine intermediate and an unsaturated ketimine.


Asunto(s)
Citrobacter freundii , Protones , Aminoácidos , Liasas de Carbono-Azufre/metabolismo , Catálisis , Deuterio , Iminas , Cinética , Metionina/metabolismo , Nitrilos , Fosfatos , Fosfato de Piridoxal/metabolismo
3.
ACS Omega ; 7(1): 959-967, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35036759

RESUMEN

Pyridoxal 5'-phosphate-dependent methionine γ-lyase from Citrobacter freundii (MGL, EC 4.4.1.11) is studied as an antitumor enzyme and in combination with substrates as an antibacterial agent in enzyme pro-drug therapy. For the possibility of in vivo trials, two mutant forms, C115H MGL and V358Y MGL, were encapsulated into polyionic vesicles (PICsomes). Five pairs of polymers with the number of polymer chain units 20, 50, 70, 120, and 160 were synthesized. The effect of polymer length-PEGylated poly-l-aspartic acid and poly-l-lysine-on the degree of MGL incorporation into PICsomes and their size was investigated. Encapsulation of proteins in PICsomes is a rather new technique. Our data demonstrated that the length of the polymers and, therefore, the ratio of the hydrophobic and hydrophilic fragments most likely should be selected individually for each protein to be encapsulated. The efficiency of encapsulation of MGL mutant forms into PICsomes was up to 11%. The hydrodynamic diameter and surface potential of hollow and MGL-loaded PICsomes were evaluated by the dynamic light scattering method. The size and morphology of the PICsomes were determined by atomic force microscopy. The most acceptable for further in vivo studies were PICsomes20 with a size of 57-64 nm, PICsomes70 of 50-90 nm, and PICsomes120 of 100-105 nm. The analysis of the steady-state parameters has demonstrated that both mutant forms retained their catalytic properties inside the nanoparticles. The release study of the enzymes from PICsomes revealed that about 50% of the enzymes remained encapsulated in PICsomes70 and PICsomes120 after 24 h. Based on the data obtained, the most promising for in vivo studies are PICsomes70 and PICsomes120.

4.
Biochimie ; 194: 13-18, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34923045

RESUMEN

Therapeutic enzymes used for the treatment of a wide range of human disorders often suffer from suboptimal pharmacokinetics and stability. Engineering approaches such as encapsulation in micro- and nanocarriers, and replacements of amino acid residues of the native enzyme provide significant potential for improving the performance of enzyme therapy. Here, we develop a nanodelivery system on the base of polyion complex vesicles (PICsomes) that includes methionine γ-lyase (MGL) as a therapeutic enzyme. We have two strategies for using the enzyme: first, methionine γ-lyase is an anticancer agent removing l-methionine from plasma, second, the binary system methionine γ-lyase/S-alk(en)yl-l-cysteine sulfoxides is effective in enzyme prodrug therapy (EPT). Various lengths polymers were synthesized, and two mutant forms of the enzyme were used. The catalytic and pharmacokinetic parameters of the nanoformulations were investigated. The catalytic efficiencies of encapsulated enzymes were comparable to that of native enzymes. Pharmacokinetic analysis has shown that inclusion into PICsomes increases half-life of the enzymes, and they can be safely administered in vivo. The results suggest the further use of encapsulated MGLs for EPT and anticancer therapy, and this strategy could be leveraged to improve the efficiency of enzyme-based therapies for managing serious human diseases.


Asunto(s)
Liasas , Liasas de Carbono-Azufre/metabolismo , Cisteína/química , Humanos , Cinética , Liasas/metabolismo , Metionina/metabolismo , Sulfóxidos/metabolismo
5.
Protein Expr Purif ; 180: 105810, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33338587

RESUMEN

The gene NT01CX_1210 of pathogenic bacterium Clostridium novyi annotated as encoding O-acetylhomoserine sulfhydrylase was cloned and expressed in Escherichia coli. The gene product having O-acetylhomoserine sulfhydrylase activity was purified to homogeneity. The protein showed molecular mass of approximately 184 kDa for the native form and 46 kDa for the subunit. The enzyme catalyzes the γ-substitution reaction of O-acetylhomoserine with maximum activity at pH 7.5. Analysis of C. novyi genome allowed us to suggest that there is only one way for the synthesis of l-methionine in the bacterium. The data obtained may provide the basis for further study of the role of OAHS in Clostridium bacteria and an ascertainment of its mechanism.


Asunto(s)
Proteínas Bacterianas , Liasas de Carbono-Oxígeno , Clonación Molecular , Clostridium/genética , Expresión Génica , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Liasas de Carbono-Oxígeno/biosíntesis , Liasas de Carbono-Oxígeno/química , Liasas de Carbono-Oxígeno/genética , Liasas de Carbono-Oxígeno/aislamiento & purificación , Clostridium/enzimología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
6.
ACS Omega ; 5(14): 7782-7786, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32309686

RESUMEN

Lung disease caused by Pseudomonas aeruginosa is the leading reason for death in cystic fibrosis patients. Therapeutic efficacy of the pharmacological pairs, the naked/encapsulated mutant form of Citrobacter freundii methionine γ-lyase and the substrates, sulfoxides of S-substituted l-cysteine, generating thiosulfinates, was evaluated on the murine model of experimental sepsis caused by the multidrug-resistant P. aeruginosa 203-2 strain. The pairs containing the naked enzyme and substrates did not have antibacterial activity. The treatment of mice with the pair encapsulated enzyme and S-methyl-l-cysteine sulfoxide, generating dimethyl thiosulfinate, led to a complete recovery of the animals of the model, with the infecting dose equal to LD50. The pair generating diallyl thiosulfinate (allicin) proved to be less effective. So, the substituents, attached to the thiosulfinate moiety, affect the antibacterial activity of thiosulfinates against P. aeruginosa.

7.
Biochimie ; 168: 190-197, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31711941

RESUMEN

Interactions of Citrobacter freundii methionine γ-lyase (MGL) with sulfoxides of typical substrates were investigated. It was found that sulfoxides are suicide substrates of the enzyme. The products of the ß- and γ-elimination reactions of sulfoxides, thiosulfinates, oxidize three cysteine residues of the enzyme. Three-dimensional structures of MGL inactivated by dimethyl thiosulfinate and diethyl thiosulfinate were determined at 1.46 Šand 1.59 Šresolution. Analysis of the structures identified SH groups oxidized by thiosulfinates and revealed the structural bases of MGL inactivation. The extent of inactivation of MGL in the catalysis of the ß-elimination reaction depends on the length of the «tail¼ at oxidized Cys115. Oxidation of Cys115 results in MGL incapable to catalyze the stage of methyl mercaptan elimination of the physiological reaction.


Asunto(s)
Aminoácidos/química , Liasas de Carbono-Azufre/química , Citrobacter freundii/enzimología , Cisteína/química , Sulfóxidos/química , Proteínas Bacterianas/química , Cinética , Ligandos , Modelos Moleculares
8.
Int J Biol Macromol ; 140: 1277-1283, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31470057

RESUMEN

Citrobacter freundii methionine γ-lyase (MGL), in addition to the physiological reaction, catalyzes the ß-elimination reaction of S-alk(en)yl-L-cysteine sulfoxides to yield thiosulfinates, which have antibacterial activity. We have obtained the mutant form C115H MGL, which cleaves S-alk(en)yl-L-cysteine sulfoxides more effectively than the wild type enzyme does. The binary system MGL/S-alk(en)yl-L-cysteine sulfoxides may be considered as a new pharmacological pair in enzyme prodrug therapy (EPT). Despite of the successful application of this pair in antibacterial studies in vitro, in vivo experiments may lead to several problems typical of therapeutic proteins including a relatively short-lasting biological activity. To circumvent these problems, we have investigated several approaches to improve safety and efficacy of the enzyme component of the pharmacological pair. This included covalent attachment of poly(ethylene glycol) to the enzyme, its encapsulation in liposomes and polymeric vesicles (PICsomes). The steady-state and pharmacokinetic parameters of modified/encapsulated enzyme were determined. It was demonstrated that the encapsulation in PICsomes prolongs in vivo stability of C115H MGL to over 42 h compared to PEGylated enzyme (3 h). Antibacterial activity of binary system ("pharmacological pair") modified/encapsulated enzyme/S-alk(en)yl-L-cysteine sulfoxides was tested and remained the same as for the naked enzyme. Thus, the usage of MGL-loaded PICsomes as enzymatic nanoreactors in ETP to produce antimicrobial thiosulfinates is promising.


Asunto(s)
Liasas de Carbono-Azufre/farmacocinética , Profármacos/farmacocinética , Animales , Antiinfecciosos/farmacología , Liasas de Carbono-Azufre/sangre , Liasas de Carbono-Azufre/farmacología , Citrobacter freundii/enzimología , Femenino , Liposomas , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Polietilenglicoles/química , Profármacos/farmacología
9.
IUBMB Life ; 71(11): 1815-1823, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31359602

RESUMEN

O-acetylhomoserine sulfhydrylase (OAHS) is a pyridoxal 5'-phosphate-dependent enzyme involved in microbial methionine biosynthesis. In this study, we report gene cloning, protein purification, and some biochemical characteristics of OAHS from Clostridioides difficile. The enzyme is a tetramer with molecular weight of 185 kDa. It possesses a high activity in the reaction of L-homocysteine synthesis, comparable to reported activities of OAHSes from other sources. OAHS activity is inhibited by metabolic end product L-methionine. L-Propargylglycine was found to be a suicide inhibitor of the enzyme. Substrate analogue Nγ -acetyl-L-2,4-diaminobutyric acid is a competitive inhibitor of OAHS with Ki = 0.04 mM. Analysis of C. difficile genome allows to suggest that the bacterium uses the way of direct sulfhydrylation for the synthesis of L-methionine. The data obtained may provide the basis for further study of the role of OAHS in the pathogenic bacterium and the development of potential inhibitors.


Asunto(s)
Alquinos/metabolismo , Liasas de Carbono-Oxígeno/metabolismo , Clonación Molecular/métodos , Clostridioides difficile/enzimología , Glicina/análogos & derivados , Metionina/biosíntesis , Fosfato de Piridoxal/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Secuencia de Aminoácidos , Liasas de Carbono-Oxígeno/genética , Clostridioides difficile/genética , Genoma Bacteriano , Glicina/metabolismo , Homología de Secuencia , Especificidad por Sustrato
10.
Biochimie ; 151: 42-44, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29803632

RESUMEN

S-Alk(en)yl-l-cysteine sulfoxides, initially found in plants of the genus Allium, are converted to antimicrobial thiosulfinates by pyridoxal 5'-phosphate(PLP)-dependent alliinase (EC 4.4.1.4). It was found that methionine γ-lyase (MGL, EC 4.4.1.11) catalyzes the ß-elimination reaction of (±)-S-alk(en)yl-l-cysteine sulfoxides to yield thiosulfinates. The efficient catalyst for the production of thiosulfinates, C115H mutant MGL, developed in our previous work, cleaves S-alk(en)yl-l-cysteine sulfoxides more effectively than the wild type enzyme. Thiosulfinates generated by the C115H MGL/sulfoxide system have demonstrated growth inhibition of Gram-positive, Gram-negative bacteria and clinical isolates of pathogenic bacteria from mice. In search of a more effective system for production of antibacterial thiosulfinates we synthesized S-substituted analogues of l-cysteine sulfoxide with a longer side chains - (±)-S-propyl-l-cysteine sulfoxide ((±)-propiin) and (±)-S-n-butyl-l-cysteine sulfoxide ((±)-butiin) and determined catalytic parameters of the ß-elimination reaction of two sulfoxides. It was found that C115H MGL cleaves (±)-propiin with the highest rate, as compared to other (±)-S-alk(en)yl-l-cysteine sulfoxides. Studies on interaction of the enzyme with (+)- or (-)-S-alk(en)yl-l-cysteine sulfoxides revealed that C115H MGL can decompose both diastereomers equally. The antibacterial activity of the mixture of the mutant MGL with (±)-propiin is comparable with those of the mixtures with S-allyl-l-cysteine sulfoxide (alliin) and S-methyl-l-cysteine sulfoxide (methiin). The results make MGL/sulfoxide system more advantageous in preparing antibacterial thiosulfinates as compared to alliinase-based system, which preferably cleaves naturally occurring (+)-sulfoxides.


Asunto(s)
Antibacterianos/metabolismo , Liasas de Carbono-Azufre/metabolismo , Citrobacter freundii/enzimología , Mutación , Ácidos Sulfínicos/metabolismo , Sulfóxidos/metabolismo , Antibacterianos/farmacología , Catálisis , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estereoisomerismo , Ácidos Sulfínicos/farmacología
11.
IUBMB Life ; 69(9): 668-676, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28681503

RESUMEN

The exploitation of methionine-depleting enzyme methionine γ-lyase (MGL) is a promising strategy against specific cancer cells that are strongly dependent on methionine. To identify MGL from different sources with high catalytic activity and efficient anticancer action, we have expressed and characterized MGL from Clostridium novyi and compared its catalytic efficiency with the previously studied MGL from Citrobacter freundii. The purified recombinant MGL exhibits kcat and kcat /Km for methionine γ-elimination reaction that are 2.4- and 1.36-fold higher than C. freundii enzyme, respectively, whereas absorption, fluorescence, and circular dichroism spectra are very similar, as expected on the basis of 87% sequence identity and high conservation of active site residues. The reactivity of cysteine residues with DTNB and iodoacetamide was investigated as well as the impact of their chemical modification on catalytic activity. This information is relevant because for increasing bioavailability and reducing immunogenity, MGL should be decorated with polyethylene glycol (PEG). It was found that Cys118 is a faster reacting residue, which results in a significant decrease in the γ-elimination activity. Thus, the protection of Cys118 before conjugation with cysteine-reacting PEG represents a valuable strategy to preserve MGL activity. The anticancer action of C. novyi MGL, evaluated in vitro against prostate (PC-3), chronic myelogenous leucemia (K562), and breast (MDA-MB-231 and MCF7) cancer cells, exhibits IC50 of 1.3 U mL-1 , 4.4 U mL-1 , 1.2 U mL-1 , and 3.4 U mL-1 , respectively. A higher cytotoxicity of C. novyi MGL was found against cancer cells with respect to C. freundii MGL, with the exception of PC-3, where a lower cytotoxicity was observed. © 2017 IUBMB Life, 69(9):668-676, 2017.


Asunto(s)
Antineoplásicos/farmacología , Liasas de Carbono-Azufre/genética , Neoplasias/tratamiento farmacológico , Proteínas Recombinantes/genética , Antineoplásicos/química , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Clonación Molecular , Clostridium/enzimología , Clostridium/genética , Humanos , Neoplasias/enzimología , Neoplasias/patología , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología
12.
Biochim Biophys Acta Proteins Proteom ; 1865(9): 1123-1128, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28602917

RESUMEN

The mutant form of Citrobacter freundii methionine γ-lyase with the replacement of active site Cys115 for His has been found to be inactive in the γ-elimination reaction of methionine while fully active in the γ-elimination reaction of O-acetyl-l-homoserine and in the ß-elimination reaction of S-alk(en)yl-substituted cysteines. In this work, the crystal structure of the mutant enzyme complexed with competitive inhibitor, l-norleucine was determined at 1.45Å resolution. At the enzyme active site the inhibitor proved to be bound both noncovalently and covalently, which corresponds to the two intermediates of the γ- and ß-elimination reactions, Michaelis complex and the external aldimine. Analysis of the structure allowed us to suggest the possible reason for the inability of the mutant enzyme to catalyze the physiological reaction.


Asunto(s)
Proteínas Bacterianas/química , Liasas de Carbono-Azufre/química , Citrobacter freundii/enzimología , Mutación Missense , Norleucina/metabolismo , Mutación Puntual , Sustitución de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Liasas de Carbono-Azufre/antagonistas & inhibidores , Liasas de Carbono-Azufre/metabolismo , Dominio Catalítico , Citrobacter freundii/genética , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Conformación Proteica
13.
IUBMB Life ; 68(10): 830-5, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27647488

RESUMEN

Pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) catalyzes the ß-elimination reaction of S-alk(en)yl-l-cysteine sulfoxides to thiosulfinates, which possess antimicrobial activity. Partial inactivation of the enzyme in the course of the reaction occurs due to oxidation of active site cysteine 115 conserved in bacterial MGLs. In this work, the C115H mutant form of Clostridium sporogenes MGL was prepared and the steady-state kinetic parameters of the enzyme were determined. The substitution results in an increase in the catalytic efficiency of the mutant form towards S-substituted l-cysteine sulfoxides compared to the wild type enzyme. We used a sulfoxide/enzyme system to generate antibacterial activity in situ. Two-component systems composed of the mutant enzyme and three S-substituted l-cysteine sulfoxides were demonstrated to be effective against Gram-positive and Gram-negative bacteria and three clinical isolates from mice. © 2016 IUBMB Life, 68(10):830-835, 2016.


Asunto(s)
Antibacterianos/síntesis química , Proteínas Bacterianas/química , Liasas de Carbono-Azufre/química , Cisteína/análogos & derivados , Cisteína/química , Ácidos Tiosulfónicos/síntesis química , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Biocatálisis , Liasas de Carbono-Azufre/genética , Clostridium/enzimología , Pruebas Antimicrobianas de Difusión por Disco , Cinética , Mutagénesis Sitio-Dirigida , Mutación Missense , Sulfóxidos/química , Ácidos Tiosulfónicos/farmacología
14.
Biochimie ; 128-129: 92-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27430732

RESUMEN

Antimicrobial activity of thiosulfinates in situ produced by mixtures of Citrobacter freundii methionine γ-lyase (MGL) with new substrates, l-methionine and S-(alkyl/allyl)-l-cysteine sulfoxides has been recently demonstrated (Anufrieva et al., 2015). This opens a way to the rational design of a new biotechnologically relevant antimicrobial drug producer. To increase the efficiency of the enzyme toward sulfoxides, the mutant forms of MGL, with the replacements of active site cysteine 115 with alanine (C115A MGL) and histidine (C115H MGL) were obtained. The replacement of cysteine 115 by histidine results in the loss of activity of the mutant enzyme in the γ-elimination reaction of physiological substrate, whereas the activity in the ß-elimination reaction of characteristic substrates persists. However, the catalytic efficiency of C115H MGL in the ß-elimination reaction of S-substituted l-cysteine sulfoxides is increased by about an order of magnitude compared to the wild type MGL. The antibacterial activity of C115H MGL mixtures with a number of sulfoxides was assessed against Gram-positive and Gram-negative bacteria. The bacteriostatic effect was more pronounced against Gram-positive than against Gram-negative bacteria, while antibacterial potential proved to be quite similar. Thus, the mutant enzyme C115H MGL is an effective catalyst, in particular, for decomposition of sulfoxides and the pharmacological couples of the mutant form with sulfoxides might be new antimicrobial agents.


Asunto(s)
Antiinfecciosos/metabolismo , Proteínas Bacterianas/metabolismo , Liasas de Carbono-Azufre/metabolismo , Citrobacter freundii/enzimología , Ácidos Sulfínicos/metabolismo , Alanina/genética , Alanina/metabolismo , Antiinfecciosos/farmacología , Proteínas Bacterianas/genética , Biocatálisis , Liasas de Carbono-Azufre/genética , Citrobacter freundii/genética , Citrobacter freundii/metabolismo , Cisteína/genética , Cisteína/metabolismo , Histidina/genética , Histidina/metabolismo , Ingeniería Metabólica/métodos , Metionina/metabolismo , Pruebas de Sensibilidad Microbiana , Mutación Missense , Espectrofotometría , Especificidad por Sustrato , Ácidos Sulfínicos/farmacología , Sulfóxidos/metabolismo
15.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 1): 65-71, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26750487

RESUMEN

Methionine γ-lyase (MGL) is a pyridoxal 5'-phosphate-dependent enzyme that catalyzes the γ-elimination reaction of L-methionine. The enzyme is a promising target for therapeutic intervention in some anaerobic pathogens and has attracted interest as a potential cancer treatment. The crystal structure of MGL from Clostridium sporogenes has been determined at 2.37 Šresolution. The fold of the protein is similar to those of homologous enzymes from Citrobacter freundii, Entamoeba histolytica, Pseudomonas putida and Trichomonas vaginalis. A comparison of these structures revealed differences in the conformation of two flexible regions of the N- and C-terminal domains involved in the active-site architecture.


Asunto(s)
Proteínas Bacterianas/química , Liasas de Carbono-Azufre/química , Clostridium/enzimología , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Enlace de Hidrógeno , Cinética , Metionina/química , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Fosfato de Piridoxal/química
16.
Biochim Biophys Acta ; 1854(9): 1220-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25584856

RESUMEN

In the spatial structure of methionine γ-lyase (MGL, EC 4.4.1.11) from Citrobacter freundii, Tyr58 is located at H-bonding distance to the oxygen atom of the phosphate "handle" of pyridoxal 5'-phosphate (PLP). It was replaced for phenylalanine by site-directed mutagenesis. The X-ray structure of the mutant enzyme was determined at 1.96Å resolution. Comparison of spatial structures and absorption spectra of wild-type and mutant holoenzymes demonstrated that the replacement did not result in essential changes of the conformation of the active site Tyr58Phe MGL. The Kd value of PLP for Tyr58Phe MGL proved to be comparable to the Kd value for the wild-type enzyme. The replacement led to a decrease of catalytic efficiencies in both γ- and ß-elimination reactions of about two orders of magnitude as compared to those for the wild-type enzyme. The rates of exchange of C-α- and C-ß- protons of inhibitors in D2O catalyzed by the mutant form are comparable with those for the wild-type enzyme. Spectral data on the complexes of the mutant form with the substrates and inhibitors showed that the replacement led to a change of rate the limiting step of the physiological reaction. The results allowed us to conclude that Tyr58 is involved in an optimal positioning of the active site Lys210 at some stages of γ- and ß-elimination reactions. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.


Asunto(s)
Liasas de Carbono-Azufre/química , Citrobacter freundii/enzimología , Liasas de Carbono-Azufre/metabolismo , Dominio Catalítico , Cinética , Espectroscopía de Resonancia Magnética , Tirosina
17.
J Biol Chem ; 290(1): 671-81, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25398880

RESUMEN

Methionine γ-lyase (MGL) catalyzes the γ-elimination of l-methionine and its derivatives as well as the ß-elimination of l-cysteine and its analogs. These reactions yield α-keto acids and thiols. The mechanism of chemical conversion of amino acids includes numerous reaction intermediates. The detailed analysis of MGL interaction with glycine, l-alanine, l-norvaline, and l-cycloserine was performed by pre-steady-state stopped-flow kinetics. The structure of side chains of the amino acids is important both for their binding with enzyme and for the stability of the external aldimine and ketimine intermediates. X-ray structure of the MGL·l-cycloserine complex has been solved at 1.6 Å resolution. The structure models the ketimine intermediate of physiological reaction. The results elucidate the mechanisms of the intermediate interconversion at the stages of external aldimine and ketimine formation.


Asunto(s)
Proteínas Bacterianas/química , Liasas de Carbono-Azufre/química , Citrobacter freundii/química , Iminas/química , Fosfato de Piridoxal/química , Alanina/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Liasas de Carbono-Azufre/antagonistas & inhibidores , Liasas de Carbono-Azufre/genética , Dominio Catalítico , Citrobacter freundii/enzimología , Cristalografía por Rayos X , Cicloserina/química , Cisteína/química , Inhibidores Enzimáticos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Glicina/química , Cinética , Modelos Químicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Termodinámica , Valina/análogos & derivados , Valina/química
18.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 11): 3034-42, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25372692

RESUMEN

The interaction of Citrobacter freundii methionine γ-lyase (MGL) and the mutant form in which Cys115 is replaced by Ala (MGL C115A) with the nonprotein amino acid (2R)-2-amino-3-[(S)-prop-2-enylsulfinyl]propanoic acid (alliin) was investigated. It was found that MGL catalyzes the ß-elimination reaction of alliin to form 2-propenethiosulfinate (allicin), pyruvate and ammonia. The ß-elimination reaction of alliin is followed by the inactivation and modification of SH groups of the wild-type and mutant enzymes. Three-dimensional structures of inactivated wild-type MGL (iMGL wild type) and a C115A mutant form (iMGL C115A) were determined at 1.85 and 1.45 Šresolution and allowed the identification of the SH groups that were oxidized by allicin. On this basis, the mechanism of the inactivation of MGL by alliin, a new suicide substrate of MGL, is proposed.


Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Citrobacter freundii/enzimología , Cisteína/análogos & derivados , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/genética , Citrobacter freundii/química , Citrobacter freundii/genética , Citrobacter freundii/metabolismo , Cristalografía por Rayos X , Cisteína/metabolismo , Activación Enzimática , Modelos Moleculares , Mutación Puntual , Conformación Proteica
19.
Biochimie ; 101: 161-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24463191

RESUMEN

The three-dimensional structure of the external aldimine of Citrobacter freundii methionine γ-lyase with competitive inhibitor glycine has been determined at 2.45 Å resolution. It revealed subtle conformational changes providing effective binding of the inhibitor and facilitating labilization of Cα-protons of the external aldimine. The structure shows that 1, 3-prototropic shift of Cα-proton to C4'-atom of the cofactor may proceed with participation of active site Lys210 residue whose location is favorable for performing this transformation by a concerted mechanism. The observed stereoselectivity of isotopic exchange of enantiotopic Cα-protons of glycine may be explained on the basis of external aldimine structure. The exchange of Cα-pro-(R)-proton of the external aldimine might proceed in the course of the concerted transfer of the proton from Cα-atom of glycine to C4'-atom of the cofactor. The exchange of Cα-pro-(S)-proton may be performed with participation of Tyr113 residue which should be present in its basic form. The isotopic exchange of ß-protons, which is observed for amino acids bearing longer side groups, may be effected by two catalytic groups: Lys210 in its basic form, and Tyr113 acting as a general acid.


Asunto(s)
Proteínas Bacterianas/química , Liasas de Carbono-Azufre/química , Citrobacter freundii/enzimología , Glicina/química , Unión Competitiva , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Iminas/química , Metionina/química , Modelos Moleculares , Nitrilos/química , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA