Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 29(38): 384001, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-29949519

RESUMEN

Laser processing of carbon compounds towards the formation of graphene-based structures gains ground in view of the practicality that lasers offer against other conventional graphene preparation methods. The current work explores the viability of low-cost lasers, operating at ambient conditions, for the transformation of various graphitic materials to structures with graphene-like atomic arrangements. Starting materials are at two opposing sides. On one side stands the typical graphite crystal with Bernal stacking and strong sp 2 character, while nanocrystalline graphitic powders are also investigated. It is demonstrated that graphene-like structures can be prepared either by starting from a well-organized Bernal-stacked network or by irradiating nanocrystalline carbon. The current findings document that laser processing at minimal chamber conditions shows high potential for preparing high-quality graphene-based structures starting from low-cost materials. Apart from being scalable, the proposed method is adaptable to current technological platforms emerging as a viable and eco-friendly graphene production technology.

2.
Nanotechnology ; 27(4): 045404, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26657923

RESUMEN

The growth of MoS2 films by sulfurization of Mo foils at atmospheric pressure is reported. The growth procedure provides, in a controlled way, mono- and few-layer thick MoS2 films with substrate-scale uniformity across square-centimeter area on commercial foils without any pre- or post-treatment. The prepared few-layer MoS2 films are investigated as counter electrodes for dye-sensitized solar cells (DSSCs) by assessing their ability to catalyse the reduction of I3(-) to I(-) in triiodide redox shuttles. The dependence of the MoS2 catalytic activity on the number of monolayers is explored down to the bilayer thickness, showing performance similar to that of, and stability against corrosion better than, Pt-based nanostructured film. The DSSC with the MoS2-Mo counter electrode yields a photovoltaic energy conversion efficiency of 8.4%, very close to that of the Pt-FTO-based DSSC, i.e. 8.7%. The current results disclose a facile, cost-effective and green method for the fabrication of mechanically robust and chemically stable, few-layer MoS2 on flexible Mo substrates and further demonstrate that efficient counter electrodes for DSSCs can be prepared at thicknesses down to the 1-2 nm scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA