Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Biol (Stuttg) ; 26(2): 245-256, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38196283

RESUMEN

This study was designed to elucidate the physiological responses of three Lotus forage accessions to alkaline stress, and the influence of inoculating with Pantoea eucalypti endophyte strain on alkaline stress mitigation. A diploid L. corniculatus (Lc) accession, L. tenuis (Lt), and the interspecific hybrid Lt × Lc obtained from these two parental lines were exposed to alkaline stress (pH 8.2). Both Lt and the Lt × Lc hybrid are alkaline-tolerant compared to Lc, based on observations that dry mass was not reduced under stress, and there were no chlorosis symptoms on leaf blades. In all three Lotus accessions, Fe2+ concentration under stress decreased in aerial parts and simultaneously increased in roots. Inoculation with P. eucalypti considerably increased Fe2+ content in shoots of all three Lotus forage species under alkaline treatment. Photochemical efficiency of PSII was affected in Lc accession only when exposed to alkaline treatment. However, when cultivated under alkalinity with inoculation, plants recovered and had photosynthetic parameters equivalent to those in the control treatment. Together, the results highlight the importance of inoculation with P. eucalypti, which contributes significantly to mitigating alkaline stress. All results provide useful information for improving alkaline tolerance traits of Lotus forage species and their interspecific hybrids.


Asunto(s)
Lotus , Pantoea , Lotus/fisiología , Hibridación Genética , Fotosíntesis
2.
Plant Biol (Stuttg) ; 23(2): 363-374, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33190297

RESUMEN

Waterlogging and salinity impair crop growth and productivity worldwide, with their combined effects being larger than the additive effects of the two stresses separately. Here, a common forage tetraploid Lotus corniculatus (cv. San Gabriel) and a diploid L. corniculatus accession, collected from a coastal area with high frequency of waterlogging-saline stress events, were evaluated for tolerance to waterlogging, salinity and these two stresses combined. We hypothesize that, due to its environmental niche, the diploid accession would show better adaptation to combined waterlogging-saline stress compared to the tetraploid L. corniculatus. Plants were evaluated under control conditions, waterlogging, salinity and a combined waterlogging-saline treatment for 33 days. Shoot and root growth were assessed, together with chlorophyll fluorescence and gas exchange measurements. Results showed that salinity and waterlogging effects were more severe for the tetraploid accession, with a larger effect being observed under the combined stress condition. Concentrations of Na+ , Cl- and K+ were measured in apical and basal leaves, and in roots. A larger accumulation of Na+ and Cl- was observed under both saline and combined stress treatments for the tetraploid L. corniculatus, for which ion toxicity effects were evident. The expression of CLC gene, coding for a Cl- transporter, was only increased in diploid L. corniculatus plants in response to the combined stress condition, suggesting that ion compartmentalization mechanisms were induced in this accession. Thus, this recently characterized L. corniculatus could be used for the introduction of new tolerance traits in other Lotus species used as forage.


Asunto(s)
Lotus , Cloruro de Sodio , Estrés Fisiológico , Lotus/efectos de los fármacos , Lotus/genética , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Salinidad , Cloruro de Sodio/toxicidad , Estrés Fisiológico/genética , Agua/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA