Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928165

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune condition frequently found in rheumatological patients that sometimes raises diagnosis and management problems. The pathogenesis of the disease is complex and involves the activation of many cells and intracellular signaling pathways, ultimately leading to the activation of the innate and acquired immune system and producing extensive tissue damage. Along with joint involvement, RA can have numerous extra-articular manifestations (EAMs), among which lung damage, especially interstitial lung disease (ILD), negatively influences the evolution and survival of these patients. Although there are more and more RA-ILD cases, the pathogenesis is incompletely understood. In terms of genetic predisposition, external environmental factors act and subsequently determine the activation of immune system cells such as macrophages, neutrophils, B and T lymphocytes, fibroblasts, and dendritic cells. These, in turn, show the ability to secrete molecules with a proinflammatory role (cytokines, chemokines, growth factors) that will produce important visceral injuries, including pulmonary changes. Currently, there is new evidence that supports the initiation of the systemic immune response at the level of pulmonary mucosa where the citrullination process occurs, whereby the autoantibodies subsequently migrate from the lung to the synovial membrane. The aim of this paper is to provide current data regarding the pathogenesis of RA-associated ILD, starting from environmental triggers and reaching the cellular, humoral, and molecular changes involved in the onset of the disease.


Asunto(s)
Artritis Reumatoide , Enfermedades Pulmonares Intersticiales , Humanos , Artritis Reumatoide/metabolismo , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Artritis Reumatoide/etiología , Enfermedades Pulmonares Intersticiales/etiología , Enfermedades Pulmonares Intersticiales/inmunología , Enfermedades Pulmonares Intersticiales/metabolismo , Enfermedades Pulmonares Intersticiales/patología , Pulmón/patología , Pulmón/inmunología , Pulmón/metabolismo , Animales , Autoanticuerpos/inmunología
2.
J Pers Med ; 14(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38248746

RESUMEN

The study of retinal vessels in relation to cardiovascular risk has a long history. The advent of a dedicated tool based on digital imaging, i.e., the retinal vessel analyzer, and also other software such as Integrative Vessel Analysis (IVAN), Singapore I Vessel Assessment (SIVA), and Vascular Assessment and Measurement Platform for Images of the Retina (VAMPIRE), has led to the accumulation of a formidable body of evidence regarding the prognostic value of retinal vessel analysis (RVA) for cardiovascular and cerebrovascular disease (including arterial hypertension in children). There is also the potential to monitor the response of retinal vessels to therapies such as physical activity or bariatric surgery. The dynamic vessel analyzer (DVA) remains a unique way of studying neurovascular coupling, helping to understand the pathogenesis of cerebrovascular and neurodegenerative conditions and also being complementary to techniques that measure macrovascular dysfunction. Beyond cardiovascular disease, retinal vessel analysis has shown associations with and prognostic value for neurological conditions, inflammation, kidney function, and respiratory disease. Artificial intelligence (AI) (represented by algorithms such as QUantitative Analysis of Retinal vessel Topology and siZe (QUARTZ), SIVA-DLS (SIVA-deep learning system), and many others) seems efficient in extracting information from fundus photographs, providing prognoses of various general conditions with unprecedented predictive value. The future challenges will be integrating RVA and other qualitative and quantitative risk factors in a unique, comprehensive prediction tool, certainly powered by AI, while building the much-needed acceptance for such an approach inside the medical community and reducing the "black box" effect, possibly by means of saliency maps.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA