Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20156869

RESUMEN

Samples for diagnostic tests for SARS-CoV-2 can be obtained from the upper (nasopharyngeal/oropharyngeal swabs) or lower respiratory tract (sputum or tracheal aspirate or broncho-alveolar lavage - BAL). Data from different testing sites indicates different rates of positivity. Reverse-transcriptase polymerase chain reaction (RT-PCR) allows for semi-quantitative estimates of viral load as time to crossing threshold (Ct) is inversely related to viral load. ObjectivesThe objective of our study was to evaluate SARS-CoV2 RNA loads between paired nasopharyngeal (NP) and deep lung (endotracheal aspirate or BAL) samples from critically ill patients. MethodsSARS-CoV-2 RT-PCR results were retrospectively reviewed for 51 critically ill patients from 5 intensive care units in 3 hospitals ; Addenbrookes Hospital Cambridge (3 units), Royal Papworth Cambridge (1 unit), and Royal Sunderland Hospital (1 unit). At the times when paired NP and deep lung samples were obtained, one patient had been on oxygen only, 6 patients on non-invasive ventilation, 18 patients on ECMO, and 26 patients mechanically ventilated. ResultsResults collected showed significant gradient between NP and deep lung viral loads. Median Ct value was 29 for NP samples and 24 for deep lung samples. Of 51 paired samples, 16 were negative (below limit of detection) on NP swabs but positive (above limit of detection) on deep lung sample, whilst 2 were negative on deep sample but positive on NP (both patients were on ECMO). ConclusionsIt has been suggested that whilst SARS-CoV1 tends to replicate in the lower respiratory tract, SARS-CoV2 replicates more vigorously in the upper respiratory tract. These data challenge that assumption. These data suggest that viral migration to, and proliferation in, the lower respiratory tract may be a key factor in the progression to critical illness and the development of severe acute respiratory syndrome (SARS). Factors which promote this migration should be examined for association with severe COVID-19. From a practical point of view, patients with suspected severe COVID-19 should have virological samples obtained from the lower respiratory tract where-ever possible, as upper respiratory samples have a significant negative rate.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20118489

RESUMEN

BackgroundMicrobial cultures for the diagnosis of pneumonia take several days to return a result, and are frequently negative, compromising antimicrobial stewardship. The objective of this study was to establish the performance of a syndromic molecular diagnostic approach, using a custom TaqMan array card (TAC) covering 52 respiratory pathogens, and assess its impact on antimicrobial prescribing. MethodsThe TAC was validated against a retrospective multi-centre cohort of broncho-alveolar lavage samples. The TAC was assessed prospectively in patients undergoing investigation for suspected pneumonia, with a comparator cohort formed of patients investigated when the TAC laboratory team were unavailable. Co-primary outcomes were sensitivity compared to conventional microbiology and, for the prospective study, time to result. Metagenomic sequencing was performed to validate findings in prospective samples. Antibiotic free days (AFD) were compared between the study cohort and comparator group. Results128 stored samples were tested, with sensitivity of 97% (95% CI 88-100%). Prospectively 95 patients were tested by TAC, with 71 forming the comparator group. TAC returned results 51 hours (IQR 41-69 hours) faster than culture and with sensitivity of 92% (95% CI 83-98%) compared to conventional microbiology. 94% of organisms identified by sequencing were detected by TAC. There was a significant difference in the distribution of AFDs with more AFDs in the TAC group (p=0.02). TAC group were more likely to experience antimicrobial de-escalation (OR 2.9 (95%1.5-5.5). ConclusionsImplementation of a syndromic molecular diagnostic approach to pneumonia led to faster results, with high sensitivity and impact on antibiotic prescribing. Trial registrationThe prospective study was registered with clinicaltrials.gov NCT03996330

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA