Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 169, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252339

RESUMEN

BACKGROUND: Teak (Tectona grandis L.f.), an important source of tropical timber with immense economic value, is a highly outcrossing forest tree species. 150 unrelated accessions of teak (Tectona grandis L.f.) plus trees assembled as clones at National Teak Germplasm Bank, Chandrapur, Maharashtra, India was investigated for association mapping of candidate lignin biosynthesis gene (CAD1) and transcription factors (MYB1 and MYB2). METHODS AND RESULTS: The CAD1, MYB1 and MYB2 were amplified using specifically designed primers. The amplified sequences were then sequenced and genotyped for 112 SNPs/11 indels. We evaluated the association between SNPs and wood density in teak accessions using GLM and MLM statistical models, with Bonferroni correction applied. The teak accessions recorded an average wood density of 416.69 kg.m-3 (CV 4.97%) and comprised of three loosely structured admixed sub-populations (K = 3), containing 72.05% genetic variation within sub-populations with low intragenic LD (0-21% SNP pairs) at P < 0.05 and high LD decay (33-934 bp) at R2 = 0.1. GLM and MLM models discounting systematic biases (Q and K matrices) to avoid false discovery revealed five loci at rare variants (MAF 0.003) and three loci at common variants (MAF 0.05) to be significantly (P < 0.05) associated with the wood density. However, the stringent Bonferroni correction (4.06-7.04 × 10-4) yielded only a single associated locus (B1485C/A) from exon of MYB1 transcription factor, contributing to about 10.35% phenotypic variation in wood density trait. CONCLUSION: Scored SNP locus (B1485C/A) can be developed as a molecular probe for selection of improved planting stock with proven wood density trait for a large-scale teak plantation.


Asunto(s)
Lamiaceae , Factores de Transcripción , Factores de Transcripción/genética , Madera/genética , Genotipo , Lignina/genética , Polimorfismo de Nucleótido Simple/genética , India
2.
Saudi J Biol Sci ; 28(10): 5451-5460, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34588855

RESUMEN

Tectona grandis L.f. (Teak), a very important source of incomparable timber, withstands a wide range of tropical deciduous conditions. We achieved partial amplification of pectin methylesterase inhibitor 51 (PMEI) gene in teak by E. pilularis cinnamoyl Co-A reductase (CCR) gene specific primer. The amplified teak gene was of 750 bp, 79% identity and 97% query cover with PMEI of Sesamum indicum. The phylogenetic tree clustered the amplified gene with PMEI of database plant species, Erythranthe guttata and Sesamum indicum (87% bootstrap value). On conversion to amino acid sequence, the obtained protein comprised 237 amino acids. However, PMEI region spanned from 24 to 171 amino acids, 15.94 kDa molecular weight, 8.97 pI value and C697H1117N199O211S9 molecular formula with four conserved cysteine residues as disulfide bridges. 25.9 % protein residues were hydrophilic, 42.7% hydrophobic and 31.2% neutral. Teak 3D PMEI protein structure corresponded well with Arabidopsis thaliana and Actinidia deliciosa PMEIs. The gene maintains integrity of pectin component of middle lamella of primary cell wall and confers tolerance against various kinds of stresses. Teak conferred with overexpression of PMEI may secure a wide adaptability as well as luxuriant timber productivity and quality in adverse/ fluctuating/ scarce climatic and environmental conditions of tropical forests.

3.
Sci Rep ; 11(1): 13954, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230566

RESUMEN

Nigella sativa L. (NS) is an herbaceous plant, possessing phytochemicals of therapeutic importance. Thymoquinone is one of the active phytochemicals of NS that confers noteworthy antioxidant properties. Sodium azide, an agent of abiotic stress, can modulates antioxidant system in plants. In the present investigation, sodium azide (0, 5 µM, 10 µM, 20 µM, 50 µM, 100 µM and 200 µM) doses administered to the in vitro NS callus cultures for production/modification of secondary metabolites with augmented activity. 200 µM sodium azide treated NS callus exhibited maximum peroxidase activity (1.286 ± 0.101 nanokatal mg-1 protein) and polyphenol oxidase activity (1.590 ± 0.110 nanokatal mg-1 protein), while 100 µM sodium azide treated NS callus for optimum catalase activity (1.250 ± 0.105 nanokatal mg-1 protein). Further, 200 µM sodium azide treated NS callus obtained significantly the highest phenolics (3.666 ± 0.475 mg g-1 callus fresh weight), 20 µM sodium azide treated NS callus, the highest flavonoids (1.308 ± 0.082 mg g-1 callus fresh weight) and 100 µM sodium azide treated NS callus, the highest carotenes (1.273 ± 0.066 mg g-1 callus fresh weight). However, NS callus exhibited a decrease in thymoquinone yield/content vis-à-vis possible emergence of its analog with 5.3 min retention time and an increase in antioxidant property. Treatment with 200 µM sodium azide registered significantly the lowest percent yield of callus extract (4.6 ± 0.36 mg g-1 callus fresh weight) and thymoquinone yield (16.65 ± 2.52 µg g-1 callus fresh weight) and content (0.36 ± 0.07 mg g-1 callus dry weight) and the highest antioxidant activity (3.873 ± 0.402%), signifying a negative correlation of the former with the latter. DNA damage inhibition (24.3 ± 1.7%) was recorded significantly maximum at 200 µM sodium azide treatment. Sodium azide treated callus also recorded emergence of a new peak at 5.3 min retention time (possibly an analog of thymoquinone with augmented antioxidant activity) whose area exhibits significantly negative correlation with callus extract yield and thymoquinone yield/content and positive correlation with antioxidant activity and in vitro DNA damage inhibition. Thus, sodium azide treatment to NS callus confers possible production of secondary metabolites or thymoquinone analog (s) responsible for elevated antioxidant property and inhibition to DNA damage. The formation of potent antioxidants through sodium azide treatment to NS could be worthy for nutraceutical and pharmaceutical industries.


Asunto(s)
Antioxidantes/metabolismo , Daño del ADN , Nigella sativa/efectos de los fármacos , Azida Sódica/farmacología , Benzoquinonas/metabolismo , Catalasa/metabolismo , Catecol Oxidasa/metabolismo , ADN/metabolismo , Germinación/efectos de los fármacos , Peroxidasa/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Factores de Tiempo
4.
Antioxidants (Basel) ; 10(2)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670123

RESUMEN

Climate change is an invisible, silent killer with calamitous effects on living organisms. As the sessile organism, plants experience a diverse array of abiotic stresses during ontogenesis. The relentless climatic changes amplify the intensity and duration of stresses, making plants dwindle to survive. Plants convert 1-2% of consumed oxygen into reactive oxygen species (ROS), in particular, singlet oxygen (1O2), superoxide radical (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (•OH), etc. as a byproduct of aerobic metabolism in different cell organelles such as chloroplast, mitochondria, etc. The regulatory network comprising enzymatic and non-enzymatic antioxidant systems tends to keep the magnitude of ROS within plant cells to a non-damaging level. However, under stress conditions, the production rate of ROS increases exponentially, exceeding the potential of antioxidant scavengers instigating oxidative burst, which affects biomolecules and disturbs cellular redox homeostasis. ROS are similar to a double-edged sword; and, when present below the threshold level, mediate redox signaling pathways that actuate plant growth, development, and acclimatization against stresses. The production of ROS in plant cells displays both detrimental and beneficial effects. However, exact pathways of ROS mediated stress alleviation are yet to be fully elucidated. Therefore, the review deposits information about the status of known sites of production, signaling mechanisms/pathways, effects, and management of ROS within plant cells under stress. In addition, the role played by advancement in modern techniques such as molecular priming, systems biology, phenomics, and crop modeling in preventing oxidative stress, as well as diverting ROS into signaling pathways has been canvassed.

5.
J Plant Physiol ; 161(1): 117-20, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15002672

RESUMEN

The basal cut end of coppice shoot cuttings of Pongamia pinnata was treated for 24 h with 0 (water treated control) or 5.0 mmol/L of KMnO4, KCI, and KH2PO4 or 2.5 mmol/L of K2HPO4 and K2SO4. Inorganic salts of P, S, Cl and Mn significantly influenced IAA ionization and adventitious rhizogenesis. P and S salts had lower IAA ionization potential, but more pronounced effect on adventitious rhizogenesis than Cl and Mn salts. The linear regression analysis also established negative correlations between salt induced IAA ionization with various characteristics of adventitious rhizogenesis such as sprouting (r = -0.83, p < 0.05), rooting (r = -0.82, p < 0.05), root number (r = -0.95, p < 0.01), and root length (r = -0.80, p < 0.1). The implication of IAA ionization in adventitious rhizogenesis has been discussed and the possible role of inorganic salts therein suggested.


Asunto(s)
Millettia/metabolismo , Compuestos de Potasio/química , Sales (Química)/química , Iones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA