Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Quantum Inf Process ; 17(2): 22, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31983908

RESUMEN

We propose a proof-of-principle experiment to encode one logical qubit in noise protected subspace of three identical spins in a methyl group. The symmetry analysis of the wavefunction shows that this fermionic system exhibits a symmetry correlation between the spatial degree of freedom and the spin degree of freedom. We show that one can use this correlation to populate the noiseless subsystem by relying on the interaction between the electric dipole moment of the methyl group with a circularly polarized microwave field. Logical gates are implemented by controlling both the intensity and phase of the applied field.

2.
Quantum Inf Process ; 17(1): 15, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31997982

RESUMEN

We analyze the symmetry properties of the dipolar Hamiltonian as the main relaxation mechanism responsible for the observed NMR spectra of long-lived states of methyl groups. Long-lived states exhibit relaxation times that are considerably longer than the spin-lattice relaxation time, T 1 . The analysis is complementary to previous studies and provides insight into the relaxation mechanism of long-lived states by focusing exclusively on the symmetry of the spin Hamiltonian. Our study shows that the dipole-dipole coupling between protons of a methyl group and between the protons and an external spin are both symmetry breaking interactions that can lead to relaxation pathways that transform the polarization from symmetry order to Zeeman order. The net contribution of the internal dipolar interaction to the NMR observation of long-lived states is zero. Our calculation is in good agreement with the reported features of the observed spectra and previous theoretical studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA