Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-443978

RESUMEN

The use of passively-administered neutralizing antibodies is a promising approach for the prevention and treatment of SARS-CoV-2 infection. Antibody-mediated protection may involve immune system recruitment through Fc-dependent activation of effector cells and the complement system. However, the role of Fc-mediated functions in the efficacious in vivo neutralization of SARS-CoV-2 is not yet clear. Delineating the role this process plays in antibody-mediated protection will have a great impact on the design of such therapeutics. Here, the Fc of two highly potent SARS-CoV-2 neutralizing human monoclonal antibodies, targeting distinct domains of the spike, was engineered to abrogate their Fc-dependent functions. The protective activity of these antibodies was tested against lethal SARS-CoV-2 infections in K18-hACE2 transgenic mice, both before or two days post-exposure in comparison to their original, Fc-active antibodies. Antibody treatment with both Fc-variants similarly rescued the mice from death, reduced viral load and prevented signs of morbidity. In addition, surviving animals developed a significant endogenous immune response towards the virus. Taken together, this work provides important insight regarding the contribution of Fc-effector functions in antibody-mediated protection, which should aid in future design of effective antibody-based therapies.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20064618

RESUMEN

The COVID-19 pandemic is rapidly spreading throughout the world. Recent reports suggest that 10-30% of SARS-CoV-2 infected patients are asymptomatic. Other studies report that some subjects have significant viral shedding prior to symptom onset. Since both asymptomatic and pre-symptomatic subjects can spread the disease, identifying such individuals is critical for effective control of the SARS-CoV-2 pandemic. Therefore, there is an urgent need to increase diagnostic testing capabilities in order to also screen asymptomatic carriers. In fact, such tests will be routinely required until a vaccine is developed. Yet, a major bottleneck of managing the COVID-19 pandemic in many countries is diagnostic testing, due to limited laboratory capabilities as well as limited access to genome-extraction and Polymerase Chain Reaction (PCR) reagents. We developed P-BEST - a method for Pooling-Based Efficient SARS-CoV-2 Testing, using a non-adaptive group-testing approach, which significantly reduces the number of tests required to identify all positive subjects within a large set of samples. Instead of testing each sample separately, samples are pooled into groups and each pool is tested for SARS-CoV-2 using the standard clinically approved PCR-based diagnostic assay. Each sample is part of multiple pools, using a combinatorial pooling strategy based on compressed sensing designed for maximizing the ability to identify all positive individuals. We evaluated P-BEST using leftover samples that were previously clinically tested for COVID-19. In our current proof-of-concept study we pooled 384 patient samples into 48 pools providing an 8-fold increase in testing efficiency. Five sets of 384 samples, containing 1-5 positive carriers were screened and all positive carriers in each set were correctly identified. P-BEST provides an efficient and easy-to-implement solution for increasing testing capacity that will work with any clinically approved genome-extraction and PCR-based diagnostic methodologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA