Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Malar J ; 16(1): 270, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28676092

RESUMEN

BACKGROUND: Understanding how mosquitoes respond to long lasting insecticide treated nets (LLINs) is fundamental to sustaining the effectiveness of this essential control tool. We report on studies with a tracking system to investigate behaviour of wild anophelines at an LLIN, in an experimental hut at a rural site in Mwanza, Tanzania. METHODS: Groups of adult female mosquitoes (n = 10 per replicate) reared from larvae of a local population, identified as predominantly (95%) Anopheles arabiensis, were released in the hut. An infrared video tracking system recorded flight and net contact activity over 1 h as the mosquitoes attempted to reach a supine human volunteer within a bed net (either a deltamethrin-treated LLIN or an untreated control net). A range of activities, including flight path, position in relation to the bed net and duration of net contact, were quantified and compared between treatments. RESULTS: The total time that female An. arabiensis spent in flight around LLINs was significantly lower than at untreated nets [F(1,10) = 9.26, p = 0.012], primarily due to a substantial reduction in the time mosquitoes spent in persistent 'bouncing' flight [F(1,10) = 18.48, p = 0.002]. Most activity occurred at the net roof but significantly less so with LLINs (56.8% of total) than untreated nets [85.0%; Χ2 (15) = 234.69, p < 0.001]. Activity levels at the bed net directly above the host torso were significantly higher with untreated nets (74.2%) than LLINs [38.4%; Χ2 (15) = 33.54, p = 0.004]. 'Visiting' and 'bouncing' rates were highest above the volunteer's chest in untreated nets (39.9 and 50.4%, respectively) and LLINs [29.9 and 42.4%; Χ2 (13) = 89.91, p < 0.001; Χ2 (9) = 45.73, p < 0.001]. Highest resting rates were above the torso in untreated nets [77%; Χ2 (9) = 63.12, p < 0.001], but in LLINs only 33.2% of resting occurred here [Χ2 (9) = 27.59, p = 0.001], with resting times spread between the short vertical side of the net adjacent to the volunteer's head (21.8%) and feet (16.2%). Duration of net contact by a single mosquito was estimated at 204-290 s on untreated nets and 46-82 s on LLINs. While latency to net contact was similar in both treatments, the reduction in activity over 60 min was significantly more rapid for LLINs [F(1,10) = 6.81, p = 0.026], reiterating an 'attract and kill' rather than a repellent mode of action. CONCLUSIONS: The study has demonstrated the potential for detailed investigations of behaviour of wild mosquito populations under field conditions. The results validate the findings of earlier laboratory studies on mosquito activity at LLINs, and reinforce the key role of multiple brief contacts at the net roof as the critical LLIN mode of action.


Asunto(s)
Anopheles/fisiología , Mosquiteros Tratados con Insecticida , Insecticidas/farmacología , Mosquitos Vectores/fisiología , Nitrilos/farmacología , Piretrinas/farmacología , Animales , Anopheles/efectos de los fármacos , Conducta Alimentaria , Femenino , Control de Mosquitos , Mosquitos Vectores/efectos de los fármacos , Tanzanía
2.
Sci Rep ; 5: 13392, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26323965

RESUMEN

Long-lasting insecticidal bed nets (LLINs) protect humans from malaria transmission and are fundamental to malaria control worldwide, but little is known of how mosquitoes interact with nets. Elucidating LLIN mode of action is essential to maintain or improve efficacy, an urgent need as emerging insecticide resistance threatens their future. Tracking multiple free-flying Anopheles gambiae responding to human-occupied bed nets in a novel large-scale system, we characterised key behaviours and events. Four behavioural modes with different levels of net contact were defined: swooping, visiting, bouncing and resting. Approximately 75% of all activity occurred at the bed net roof where multiple brief contacts were focussed above the occupant's torso. Total flight and net contact times were lower at LLINs than untreated nets but the essential character of the response was unaltered. LLINs did not repel mosquitoes but impacted rapidly: LLIN contact of less than 1 minute per mosquito during the first ten minutes reduced subsequent activity; after thirty minutes, activity at LLINs was negligible. Velocity measurements showed that mosquitoes detected nets, including unbaited untreated nets, prior to contact. This is the most complete characterisation of mosquito-LLIN interactions to date, and reveals many aspects of LLIN mode of action, important for developing the next generation of LLINs.


Asunto(s)
Anopheles/efectos de los fármacos , Insecticidas/toxicidad , Animales , Anopheles/crecimiento & desarrollo , Anopheles/fisiología , Femenino , Resistencia a los Insecticidas , Mosquiteros Tratados con Insecticida , Larva/efectos de los fármacos , Larva/fisiología , Grabación en Video
3.
J Comput Neurosci ; 34(1): 39-58, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22729521

RESUMEN

Nonlinear type system identification models coupled with white noise stimulation provide an experimentally convenient and quick way to investigate the often complex and nonlinear interactions between the mechanical and neural elements of reflex limb control systems. Previous steady state analysis has allowed the neurons in such systems to be categorised by their sensitivity to position, velocity or acceleration (dynamics) and has improved our understanding of network function. These neurons, however, are known to adapt their output amplitude or spike firing rate during repetitive stimulation and this transient response may be more important than the steady state response for reflex control. In the current study previously used system identification methods are developed and applied to investigate both steady state and transient dynamic and nonlinear changes in the neural circuit responsible for controlling reflex movements of the locust hind limbs. Through the use of a parsimonious model structure and Monte Carlo simulations we conclude that key system dynamics remain relatively unchanged during repetitive stimulation while output amplitude adaptation is occurring. Whilst some evidence of a significant change was found in parts of the systems nonlinear response, the effect was small and probably of little physiological relevance. Analysis using biologically more realistic stimulation reinforces this conclusion.


Asunto(s)
Potenciales de Acción/fisiología , Adaptación Fisiológica/fisiología , Miembro Posterior/fisiología , Modelos Neurológicos , Neuronas Motoras/fisiología , Dinámicas no Lineales , Algoritmos , Animales , Saltamontes , Método de Montecarlo , Vías Nerviosas/fisiología , Estimulación Física , Valor Predictivo de las Pruebas
4.
Eur J Neurosci ; 36(9): 3269-82, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22882251

RESUMEN

Communication by analogue signals is relatively common in arthropod local networks. In the locust, non-spiking local interneurons play a key role in controlling sets of motor neurons in the generation of local reflex movements of the limbs. Here, our aim was two-fold. Our first aim was to determine the coding properties of a subpopulation of these interneurons by using system identification approaches. To this end, the femoro-tibial chordotonal organ, which monitors the movements of the tibia about the femur, was stimulated with Gaussian white noise and with more natural stimuli corresponding to the movements of the tibia during walking. The results showed that the sample of interneurons analysed displayed a wide, and overlapping, range of response characteristics. The second aim was to develop and test improved data analysis methods for describing neuronal function that are more robust and allow statistical analysis, a need emphasized by the high levels of background neuronal activity usually observed. We found that nonlinear models provided an improved fit in describing the response properties of interneurons that were then classified with statistical clustering methods. We identified four distinct categories of interneuron response that can be further divided into nine groups, with most interneurons being excited during extension movements of the leg, reflecting the outputs of upstream spiking local interneurons.


Asunto(s)
Interneuronas/fisiología , Modelos Estadísticos , Movimiento/fisiología , Vías Nerviosas/fisiología , Animales , Interpretación Estadística de Datos , Saltamontes , Miembro Posterior , Reflejo/fisiología , Transducción de Señal
5.
Opt Lett ; 33(9): 905-7, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18451934

RESUMEN

We propose an annular-aperture-based defocusing technique for three-dimensional (3D) particle metrology from a single camera view. This simple configuration has high optical efficiency and the ability to deal with overlapped defocused images. Initial results show that an uncertainty in depth of 23 microm can be achieved over a range of 10 mm for macroscopic systems. This method can also be applied in microscopy for the measurement of fluorescently doped microparticles, thus providing a promising solution for 3D flow metrology at both macroscales and microscales.

6.
IEEE Trans Biomed Eng ; 54(12): 2268-75, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18075043

RESUMEN

Cardiovascular disease (CVD) is currently the biggest single cause of mortality in the developed world, hence, the early detection of its onset is vital for effective prevention therapies. Aortic stiffness as measured by aortic pulse wave velocity (PWV) has been shown to be an independent predictor of CVD, however, the measurement of PWV is complex and time consuming. Recent studies have shown that pulse contour characteristics depend on arterial properties such as arterial stiffness. This paper presents a method for estimating PWV from the digital volume pulse (DVP), a waveform that can be rapidly and simply acquired by measuring the transmission of infra-red light through the finger pulp. PWV and DVP were measured on 461 subjects attending a clinic in South East London. Techniques for extracting features from the DVP contour based on physiology and information theory were compared. Low and high stiffness were defined according to a threshold level of PWV chosen to be 10 m/s. Using a support vector machine-based classifier, it is possible to achieve high overall classification rates on unseen data. Further, the use of support vector regression techniques lead to a direct real-valued estimate of PWV which outperforms previous methods based on multilinear regression. We, therefore, conclude that support vector machine-based classification and regression techniques provide effective prediction of arterial stiffness from the simple measurement of the digital volume pulse. This technique could be usefully employed as a cheap and effective CVD screening technique for use in general practice clinics.


Asunto(s)
Arterias/fisiopatología , Enfermedades Cardiovasculares/diagnóstico , Diagnóstico por Computador/métodos , Fotopletismografía/métodos , Procesamiento de Señales Asistido por Computador , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Inteligencia Artificial , Volumen Sanguíneo , Enfermedades Cardiovasculares/fisiopatología , Elasticidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reconocimiento de Normas Patrones Automatizadas/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA