Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Nat Commun ; 15(1): 8086, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39278958

RESUMEN

We previously reported that normothermic ex vivo kidney  perfusion (NEVKP) is superior in terms of organ protection compared to static cold storage (SCS), which is still the standard method of organ preservation, but the mechanisms are incompletely understood. We used a large animal kidney autotransplant model to evaluate mitochondrial function during organ preservation and after kidney transplantation, utilizing live cells extracted from fresh kidney tissue. Male porcine kidneys stored under normothermic perfusion showed preserved mitochondrial function and higher ATP levels compared to kidneys stored at 4 °C (SCS). Mitochondrial respiration and ATP levels were further enhanced when AP39, a mitochondria-targeted hydrogen sulfide donor, was administered during warm perfusion. Correspondingly, the combination of NEVKP and AP39 was associated with decreased oxidative stress and inflammation, and with improved graft function after transplantation. In conclusion, our findings suggest that the organ-protective effects of normothermic perfusion are mediated by maintenance of mitochondrial function and enhanced by AP39 administration. Activation of mitochondrial function through the combination of AP39 and normothermic perfusion could represent a new therapeutic strategy for long-term renal preservation.


Asunto(s)
Trasplante de Riñón , Riñón , Mitocondrias , Preservación de Órganos , Perfusión , Isquemia Tibia , Animales , Mitocondrias/metabolismo , Riñón/metabolismo , Preservación de Órganos/métodos , Masculino , Porcinos , Perfusión/métodos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Adenosina Trifosfato/metabolismo , Estrés Oxidativo , Compuestos Organofosforados , Tionas
2.
J Affect Disord ; 364: 167-177, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39117002

RESUMEN

BACKGROUND: Nutrition is largely affected in bipolar disorder (BD), however, there is a lack of understanding on the relationship between dietary categories, BD, and the prevalence of metabolic syndrome. The objective of this study is to examine dietary trends in BD and it is hypothesized that diets with increased consumption of seafood and high-fiber carbohydrates will be correlated to improved patient outcomes, and a lower frequency of metabolic syndrome. METHODS: This retrospective cohort study includes two French cohorts. The primary cohort, FACE-BD, includes 268 stable BD patients. The second cohort, I-GIVE, includes healthy controls, both stable and acute BD and schizophrenia patients. Four dietary categories were assessed: meat, seafood, low-fiber and high-fiber carbohydrates. Dietary data from two food frequency questionnaires were normalized using min-max scaling and assessed using various statistical analyses. RESULTS: In our primary cohort, the increased high-fiber carbohydrate consumption was correlated to lower prevalence of metabolic syndrome and improved mood. Low-fiber carbohydrate consumption is associated with higher BMI, while higher seafood consumption was correlated to improved mood and delayed age of onset. Results were not replicated in our secondary cohort. LIMITATIONS: Our populations were small and two different dietary questionnaires were used; thus, results were used to examine similarities in trends. CONCLUSIONS: Overall, various dietary trends were associated with metabolic syndrome, BMI, lactate, mood and age of onset. Improving our understanding of nutrition in BD can provide mechanistic insight, clinically relevant nutritional guidelines for precision medicine and ultimately improve the quality of lives for those with BD.


Asunto(s)
Trastorno Bipolar , Ácido Láctico , Síndrome Metabólico , Humanos , Trastorno Bipolar/epidemiología , Femenino , Masculino , Síndrome Metabólico/epidemiología , Adulto , Estudios Retrospectivos , Persona de Mediana Edad , Ácido Láctico/sangre , Dieta , Esquizofrenia/epidemiología , Alimentos Marinos , Francia/epidemiología , Fibras de la Dieta , Índice de Masa Corporal , Carne , Afecto
3.
Front Pharmacol ; 15: 1428242, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119601

RESUMEN

The various roles of the mitochondria and the microbiome in health and disease have been thoroughly investigated, though they are often examined independently and in the context of chronic disease. However, the mitochondria and microbiome are closely connected, namely, through their evolution, maternal inheritance patterns, overlapping role in many diseases and their importance in the maintenance of human health. The concept known as the "mitochondria-microbiome crosstalk" is the ongoing bidirectional crosstalk between these two entities and warrants further exploration and consideration, especially in the context of primary mitochondrial disease, where mitochondrial dysfunction can be detrimental for clinical manifestation of disease, and the role and composition of the microbiome is rarely investigated. A potential mechanism underlying this crosstalk is the role of metabolites from both the mitochondria and the microbiome. During digestion, gut microbes modulate compounds found in food, which can produce metabolites with various bioactive effects. Similarly, mitochondrial metabolites are produced from substrates that undergo biochemical processes during cellular respiration. This review aims to provide an overview of current literature examining the mitochondria-microbiome crosstalk, the role of commonly studied metabolites serve in signaling and mediating these biochemical pathways, and the impact diet has on both the mitochondria and the microbiome. As a final point, this review highlights the up-to-date implications of the mitochondria-microbiome crosstalk in mitochondrial disease and its potential as a therapeutic tool or target.

4.
Nat Cardiovasc Res ; 3(5): 567-593, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39086373

RESUMEN

Yolk sac macrophages are the first to seed the developing heart, however we have no understanding of their roles in human heart development and function due to a lack of accessible tissue. Here, we bridge this gap by differentiating human embryonic stem cells (hESCs) into primitive LYVE1+ macrophages (hESC-macrophages) that stably engraft within contractile cardiac microtissues composed of hESC-cardiomyocytes and fibroblasts. Engraftment induces a human fetal cardiac macrophage gene program enriched in efferocytic pathways. Functionally, hESC-macrophages trigger cardiomyocyte sarcomeric protein maturation, enhance contractile force and improve relaxation kinetics. Mechanistically, hESC-macrophages engage in phosphatidylserine dependent ingestion of apoptotic cardiomyocyte cargo, which reduces microtissue stress, leading hESC-cardiomyocytes to more closely resemble early human fetal ventricular cardiomyocytes, both transcriptionally and metabolically. Inhibiting hESC-macrophage efferocytosis impairs sarcomeric protein maturation and reduces cardiac microtissue function. Taken together, macrophage-engineered human cardiac microtissues represent a considerably improved model for human heart development, and reveal a major beneficial role for human primitive macrophages in enhancing early cardiac tissue function.

5.
Psychiatry Res ; 339: 116063, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39003800

RESUMEN

The object of this study is test whether mitochondrial blood-based biomarkers are associated with markers of metabolic syndrome in bipolar disorder, hypothesizing higher lactate but unchanged cell-free circulating mitochondrial DNA levels in bipolar disorder patients with metabolic syndrome. In a cohort study, primary testing from the FondaMental Advanced Centers of Expertise for bipolar disorder (FACE-BD) was conducted, including 837 stable bipolar disorder patients. The I-GIVE validation cohort consists of 237 participants: stable and acute bipolar patients, non-psychiatric controls, and acute schizophrenia patients. Multivariable regression analyses show significant lactate association with triglycerides, fasting glucose and systolic and diastolic blood pressure. Significantly higher levels of lactate were associated with presence of metabolic syndrome after adjusting for potential confounding factors. Mitochondrial-targeted metabolomics identified distinct metabolite profiles in patients with lactate presence and metabolic syndrome, differing from those without lactate changes but with metabolic syndrome. Circulating cell-free mitochondrial DNA was not associated with metabolic syndrome. This thorough analysis mitochondrial biomarkers indicate the associations with lactate and metabolic syndrome, while showing the mitochondrial metabolites can further stratify metabolic profiles in patients with BD. This study is relevant to improve the identification and stratification of bipolar patients with metabolic syndrome and provide potential personalized-therapeutic opportunities.


Asunto(s)
Biomarcadores , Trastorno Bipolar , ADN Mitocondrial , Ácido Láctico , Síndrome Metabólico , Humanos , Trastorno Bipolar/sangre , Síndrome Metabólico/sangre , Femenino , Masculino , Biomarcadores/sangre , Adulto , Ácido Láctico/sangre , Persona de Mediana Edad , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Estudios de Cohortes , Esquizofrenia/sangre , Esquizofrenia/metabolismo , Metabolómica
6.
Artículo en Inglés | MEDLINE | ID: mdl-39053576

RESUMEN

There is growing interest in the ketogenic diet as a treatment for Bipolar Disorder (BD), with promising anecdotal and small case study reports of efficacy. Yet, the neurobiological mechanisms by which diet-induced ketosis might ameliorate BD symptoms remain to be determined, particularly in manic and hypomanic states - defining features of BD. Identifying these mechanisms will therefore provide new markers to guide personalized interventions and provide targets for novel treatment developments for individuals with BD. In this critical review, we describe recent findings highlighting two types of neurobiological abnormalities in BD: 1) mitochondrial dysfunction; and 2) neurotransmitter and neural network functional abnormalities. We will consequently link these abnormalities lead to mania/hypomania and depression in BD and then describe the biological underpinnings by which the ketogenic diet might have a beneficial effect in individuals with BD. We end the review by describing future approaches that can be employed to elucidate the neurobiology underlying the therapeutic effect of the ketogenic diet in BD. In so doing, this may provide marker predictors to identify individuals who will respond well to the ketogenic diet, as well as offer neural targets for novel treatment developments for BD.

7.
Int J Bipolar Disord ; 12(1): 21, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874862

RESUMEN

BACKGROUND: Mitochondrial dysfunction is implicated in the neuropathology of bipolar disorder (BD). Higher circulating cell-free mitochondrial DNA (ccf-mtDNA), generally reflecting poorer mitochondrial health, has been associated with greater symptoms severity in BD. The current study examines the association of serum ccf-mtDNA and brain structure in relation to youth BD. We hypothesized that higher ccf-mtDNA will be associated with measures of lower brain structure, particularly in the BD group. METHODS: Participants included 40 youth (BD, n = 19; Control group [CG], n = 21; aged 13-20 years). Serum ccf-mtDNA levels were assayed. T1-weighted brain images were acquired using 3T-MRI. Region of interest (ROI) analyses examined prefrontal cortex (PFC) and whole brain gray matter, alongside exploratory vertex-wise analyses. Analyses examined ccf-mtDNA main-effects and ccf-mtDNA-by-diagnosis interaction effects controlling for age, sex, and intracranial volume. RESULTS: There was no significant difference in ccf-mtDNA levels between BD and CG. In ROI analyses, higher ccf-mtDNA was associated with higher PFC surface area (SA) (ß = 0.32 p < 0.001) and PFC volume (ß = 0.32 p = 0.002) in the overall sample. In stratified analyses, higher ccf-mtDNA was associated with higher PFC SA within both subgroups (BD: ß = 0.39 p = 0.02; CG: ß = 0.24 p = 0.045). Higher ccf-mtDNA was associated with higher PFC volume within the BD group (ß = 0.39 p = 0.046). In vertex-wise analyses, higher ccf-mtDNA was associated with higher SA and volume in frontal clusters within the overall sample and within the BD group. There were significant ccf-mtDNA-by-diagnosis interactions in three frontal and parietal clusters, whereby higher ccf-mtDNA was associated with higher neurostructural metrics in the BD group but lower neurostructural metrics in CG. CONCLUSIONS: Contrasting our hypothesis, higher ccf-mtDNA was consistently associated with higher, rather than lower, regional neuralstructural metrics among youth with BD. While this finding may reflect a compensatory mechanism, future repeated-measures prospective studies evaluating the inter-relationship among ccf-mtDNA, mood, and brain structure across developmental epochs and illness stages are warranted.

8.
Cell Stem Cell ; 31(8): 1222-1238.e10, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38908380

RESUMEN

The intricate anatomical structure and high cellular density of the myocardium complicate the bioengineering of perfusable vascular networks within cardiac tissues. In vivo neonatal studies highlight the key role of resident cardiac macrophages in post-injury regeneration and angiogenesis. Here, we integrate human pluripotent stem-cell-derived primitive yolk-sac-like macrophages within vascularized heart-on-chip platforms. Macrophage incorporation profoundly impacted the functionality and perfusability of microvascularized cardiac tissues up to 2 weeks of culture. Macrophages mitigated tissue cytotoxicity and the release of cell-free mitochondrial DNA (mtDNA), while upregulating the secretion of pro-angiogenic, matrix remodeling, and cardioprotective cytokines. Bulk RNA sequencing (RNA-seq) revealed an upregulation of cardiac maturation and angiogenesis genes. Further, single-nuclei RNA sequencing (snRNA-seq) and secretome data suggest that macrophages may prime stromal cells for vascular development by inducing insulin like growth factor binding protein 7 (IGFBP7) and hepatocyte growth factor (HGF) expression. Our results underscore the vital role of primitive macrophages in the long-term vascularization of cardiac tissues, offering insights for therapy and advancing heart-on-a-chip technologies.


Asunto(s)
Dispositivos Laboratorio en un Chip , Macrófagos , Neovascularización Fisiológica , Humanos , Macrófagos/metabolismo , Macrófagos/citología , Miocardio/citología , Miocardio/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Corazón/fisiología
9.
Artículo en Inglés | MEDLINE | ID: mdl-38923954

RESUMEN

Background: Cannabis is one of the world's most commonly used substances; however, many questions remain unanswered as to how cannabis impacts the body. Recently, there has been a resurgence of research into the effects of plant-derived cannabinoids on mitochondrial health. In particular, a number of studies implicate mitochondrial-Δ9-tetrahydrocannabinol (Δ9-THC) interactions with altered memory, metabolism, and catalepsy in mice. Although the research in this field is expanding rapidly, there is little known about the effects of cannabis on mitochondria health in human subjects either in acute or chronic term use. Methods: Blood samples were obtained from a double-blind, placebo-controlled, parallel-group randomized clinical trial in which adults who regularly use cannabis (1-4 days/week) aged 19-25 years were randomized 2:1 to receive either an active (12.5% Δ9-THC) cigarette or placebo (<0.01% Δ9-THC) cigarette containing 750 mg of cannabis before driving simulator testing. DNA was extracted from whole blood using commercial spin columns, followed by measurement of mt-ND1, mt-ND4, and ß2M using quantitative polymerase chain reaction. One-way repeated measures analysis of variance (ANOVA) followed by Dunnett's multiple comparisons test was used to observe changes in mitochondrial DNA (mtDNA) copy number over time. A two-tailed Pearsons R test was used to assess correlations between mtDNA copy number and cannabinoid levels (Δ9-THC and metabolites) in blood. Results: We found that exposure to active cannabis containing Δ9-THC, as opposed to placebo, was associated with an acute reduction in mitochondrial DNA copy number in whole blood at 15 min and 1 h after smoking. The observed decrease in mtDNA copy number negatively correlated with blood concentrations of 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) and 11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), the two primary metabolites of Δ9-THC, but not Δ9-THC itself. Further, the negative correlation between 11-OH THC and THC-COOH concentrations and mtDNA copy number was found in only a subgroup of participants who use cannabis infrequently, suggesting a tolerance effect. Conclusions: These results illuminate mitochondrial alterations attributed to Δ9-THC consumption, which may be mediated by metabolites. These results appear to suggest stronger effects in individuals who consume cannabis less frequently, suggesting some form of tolerance to the effects of Δ9-THC and its metabolites on mtDNA content in whole blood. Keywords: Mitochondria; mtDNA; cannabis; THC; THC metabolites; blood; THC-COOH; 11-OH-THC.

10.
Stem Cell Res Ther ; 15(1): 157, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38816774

RESUMEN

Mitochondrial transplantation and transfer are being explored as therapeutic options in acute and chronic diseases to restore cellular function in injured tissues. To limit potential immune responses and rejection of donor mitochondria, current clinical applications have focused on delivery of autologous mitochondria. We recently convened a Mitochondrial Transplant Convergent Working Group (CWG), to explore three key issues that limit clinical translation: (1) storage of mitochondria, (2) biomaterials to enhance mitochondrial uptake, and (3) dynamic models to mimic the complex recipient tissue environment. In this review, we present a summary of CWG conclusions related to these three issues and provide an overview of pre-clinical studies aimed at building a more robust toolkit for translational trials.


Asunto(s)
Mitocondrias , Humanos , Mitocondrias/metabolismo , Animales , Enfermedad Aguda , Investigación Biomédica Traslacional/métodos , Terapia de Reemplazo Mitocondrial/métodos
11.
Sci Adv ; 10(13): eadk0164, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536913

RESUMEN

Despite tremendous progress in the development of mature heart-on-a-chip models, human cell-based models of myocardial inflammation are lacking. Here, we bioengineered a vascularized heart-on-a-chip with circulating immune cells to model severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced acute myocarditis. We observed hallmarks of coronavirus disease (COVID-19)-induced myocardial inflammation, as the presence of immune cells augmented the secretion of proinflammatory cytokines, triggered progressive impairment of contractile function, and altered intracellular calcium transients. An elevation of circulating cell-free mitochondrial DNA (ccf-mtDNA) was measured first in the heart-on-a-chip and then validated in COVID-19 patients with low left ventricular ejection fraction, demonstrating that mitochondrial damage is an important pathophysiological hallmark of inflammation-induced cardiac dysfunction. Leveraging this platform in the context of SARS-CoV-2-induced myocardial inflammation, we established that administration of endothelial cell-derived exosomes effectively rescued the contractile deficit, normalized calcium handling, elevated the contraction force, and reduced the ccf-mtDNA and cytokine release via Toll-like receptor-nuclear factor κB signaling axis.


Asunto(s)
COVID-19 , Exosomas , Miocarditis , Humanos , ADN Mitocondrial/genética , Volumen Sistólico , Calcio , Función Ventricular Izquierda , Inflamación , SARS-CoV-2 , Citocinas
12.
Bipolar Disord ; 26(1): 22-32, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37463846

RESUMEN

OBJECTIVES: To understand treatment practices for bipolar disorders (BD), this study leveraged the Global Bipolar Cohort collaborative network to investigate pharmacotherapeutic treatment patterns in multiple cohorts of well-characterized individuals with BD in North America, Europe, and Australia. METHODS: Data on pharmacotherapy, demographics, diagnostic subtypes, and comorbidities were provided from each participating cohort. Individual site and regional pooled proportional meta-analyses with generalized linear mixed methods were conducted to identify prescription patterns. RESULTS: This study included 10,351 individuals from North America (n = 3985), Europe (n = 3822), and Australia (n = 2544). Overall, participants were predominantly female (60%) with BD-I (60%; vs. BD-II = 33%). Cross-sectionally, mood-stabilizing anticonvulsants (44%), second-generation antipsychotics (42%), and antidepressants (38%) were the most prescribed medications. Lithium was prescribed in 29% of patients, primarily in the Australian (31%) and European (36%) cohorts. First-generation antipsychotics were prescribed in 24% of the European versus 1% in the North American cohort. Antidepressant prescription rates were higher in BD-II (47%) compared to BD-I (35%). Major limitations were significant differences among cohorts based on inclusion/exclusion criteria, data source, and time/year of enrollment into cohort. CONCLUSIONS: Mood-stabilizing anticonvulsants, second-generation antipsychotics, and antidepressants were the most prescribed medications suggesting prescription patterns that are not necessarily guideline concordant. Significant differences exist in the prescription practices across different geographic regions, especially the underutilization of lithium in the North American cohorts and the higher utilization of first-generation antipsychotics in the European cohorts. There is a need to conduct future longitudinal studies to further explore these differences and their impact on outcomes, and to inform and implement evidence-based guidelines to help improve treatment practices in BD.


Asunto(s)
Antipsicóticos , Trastorno Bipolar , Humanos , Femenino , Masculino , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/epidemiología , Trastorno Bipolar/diagnóstico , Litio/uso terapéutico , Anticonvulsivantes/uso terapéutico , Australia/epidemiología , Antipsicóticos/uso terapéutico , Antidepresivos/uso terapéutico
13.
J Affect Disord ; 340: 149-159, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37549811

RESUMEN

Adolescence is a particularly important period for brain development and is also when mood disorders typically emerge. Several psychiatric illnesses exhibit mitochondrial dysfunction, elevated inflammation, and impaired white matter integrity. This study explored the intersection of mitochondrial health, NLRP3 inflammasome activation, and white matter integrity in a small cohort of 29 adolescent patients with mood disorders (bipolar disorder (BD): n = 11, major depressive disorder (MDD): n = 19) and 19 healthy controls. In this sample, adolescents with mood disorders showed lower fractional anisotropy of the ventral cingulum bundle than healthy controls. Across all adolescents, we demonstrated a significant relationship between mitochondrial electron transport chain gene expression, and NLRP3 inflammasome gene expression and activation. Furthermore, circulating cell free mitochondrial DNA was associated with lower white matter integrity in the anterior thalamic radiation. Exploratory subgroup analyses revealed that adolescents with bipolar disorder exhibited lower levels of mitochondrial gene expression and volume, along with increased sensitivity to NLRP3 inflammasome activation compared to adolescents with unipolar depression. Overall, our results reveal relationships between peripherally-measured endpoints of mitochondrial health and NLRP3 inflammasome activation, and centrally measured endpoints of white matter integrity in adolescents. Together with subtle patterns of aberrant neural and biological structure and function in association with mood disorder diagnoses, these results may shed light on the pathophysiology of disease in this early phase of illness.


Asunto(s)
Trastorno Depresivo Mayor , Sustancia Blanca , Humanos , Adolescente , Trastornos del Humor/genética , Sustancia Blanca/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/genética , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proyectos Piloto , Mitocondrias , Anisotropía
14.
bioRxiv ; 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37609237

RESUMEN

Cardiovascular disease continues to take more human lives than all cancer combined, prompting the need for improved research models and treatment options. Despite a significant progress in development of mature heart-on-a-chip models of fibrosis and cardiomyopathies starting from induced pluripotent stem cells (iPSCs), human cell-based models of myocardial inflammation are lacking. Here, we bioengineered a vascularized heart-on-a-chip system with circulating immune cells to model SARS-CoV-2-induced acute myocarditis. Briefly, we observed hallmarks of COVID-19-induced myocardial inflammation in the heart-on-a-chip model, as the presence of immune cells augmented the expression levels of proinflammatory cytokines, triggered progressive impairment of contractile function and altered intracellular calcium transient activities. An elevation of circulating cell-free mitochondrial DNA (ccf-mtDNA) was measured first in the in vitro heart-on-a-chip model and then validated in COVID-19 patients with low left ventricular ejection fraction (LVEF), demonstrating that mitochondrial damage is an important pathophysiological hallmark of inflammation induced cardiac dysfunction. Leveraging this platform in the context of SARS-CoV-2 induced myocardial inflammation, we established that administration of human umbilical vein-derived EVs effectively rescued the contractile deficit, normalized intracellular calcium handling, elevated the contraction force and reduced the ccf- mtDNA and chemokine release via TLR-NF-kB signaling axis.

15.
Mitochondrion ; 70: 20-30, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36906251

RESUMEN

BACKGROUND AND AIMS: Hemorrhagic shock-resuscitation (HSR) following trauma contributes to organ dysfunction by causing ischemia-reperfusion injury (IRI). We previously showed that 'remote ischemic preconditioning' (RIPC) exerted multi-organ protection from IRI. Maintenance of mitochondrial quality by clearance of dysfunctional mitochondria via mitophagy is vital in restoring organ integrity. We hypothesized that parkin-dependent mitophagy played a role in RIPC-induced hepatoprotection following HSR. METHODS: The hepatoprotective effect of RIPC in a murine model of HSR-IRI was investigated in wild type and parkin-/- animals. Mice were subjected to HSR ± RIPC and blood and organs were collected, followed by cytokine ELISAs, histology, qPCR, Western blots, and transmission electron microscopy. RESULTS: HSR increased hepatocellular injury, as measured by plasma ALT and liver necrosis, while antecedent RIPC prevented this injury; in parkin-/- mice, RIPC failed to exert hepatoprotection. The ability of RIPC to lessen HSR-induced rises in plasma IL-6 and TNFα, was lost in parkin-/- mice. While RIPC alone did not induce mitophagy, the application of RIPC prior to HSR caused a synergistic increase in mitophagy, this increase was not observed in parkin-/- mice. RIPC induced shifts in mitochondrial morphology favoring mitophagy in WT but not in parkin-/- animals. CONCLUSIONS: RIPC was hepatoprotective in WT mice following HSR but not in parkin-/- mice. Loss of protection in parkin-/- mice corresponded with the failure of RIPC plus HSR to upregulate the mitophagic process. Improving mitochondrial quality by modulating mitophagy, may prove to be an attractive therapeutic target in disease processes caused by IRI.


Asunto(s)
Precondicionamiento Isquémico , Hepatopatías , Choque Hemorrágico , Ratones , Animales , Mitofagia , Isquemia , Ubiquitina-Proteína Ligasas/genética
16.
Biol Psychiatry Glob Open Sci ; 3(2): 197-203, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35103256

RESUMEN

On March 11, 2020, the World Health Organization declared the outbreak of the novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) as a global pandemic. At the center of SARS-CoV-2 is the activation of inflammatory markers; remarkably, interleukin 6 and C-reactive protein seem to be consistently elevated in patients with SARS-CoV-2. Here, we showed that increased systemic C-reactive protein and interleukin 6 are common biomarkers of both severe COVID-19 and DSM-5-defined disorders. However, it is not known whether patients with psychiatric disorders with preexisting increased interleukin 6 and C-reactive protein are more vulnerable to severe complications of COVID-19 because of the additive inflammatory processes.

17.
Transl Psychiatry ; 12(1): 504, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36476443

RESUMEN

Oxidative stress is associated with white matter diffusion metrics in adults with bipolar disorder (BD). We examined the association of single-nucleotide polymorphisms in the oxidative stress system, superoxide dismutase-2 (SOD2) rs4880 and glutathione peroxidase-3 (GPX3) rs3792797 with fractional anisotropy (FA) and radial diffusivity (RD) in youth with BD. Participants included 104 youth (age 17.5 ± 1.7 years; 58 BD, 46 healthy controls). Saliva samples were obtained for genotyping, and diffusion tensor imaging was acquired. Voxel-wise whole-brain white matter diffusion analyses controlled for age, sex, and race. There were significant diagnosis-by-SOD2 rs4880 interaction effects for FA and RD in major white matter tracts. Within BD, the group with two copies of the G-allele (GG) showed lower FA and higher RD than A-allele carriers. Whereas within the control group, the GG group showed higher FA and lower RD than A-allele carriers. Additionally, FA was higher and RD was lower within the control GG group compared to the BD GG group. No significant findings were observed for GPX3 rs3793797. The current study revealed that, within matter tracts known to differ in BD, associations of SOD2 rs4880 GG genotype with both FA and RD differed between BD vs healthy control youth. The SOD2 enzyme encoded by the G-allele, has higher antioxidant capacity than the enzyme encoded by the A-allele. We speculate that the current findings of lower FA and higher RD of the BD GG group compared to the other groups reflects attenuation of the salutary antioxidant effects of GG genotype on white matter integrity in youth with BD, in part due to predisposition to oxidative stress. Future studies incorporating other genetic markers and oxidative stress biomarkers are warranted.


Asunto(s)
Trastorno Bipolar , Sustancia Blanca , Humanos , Adolescente , Adulto Joven , Adulto , Sustancia Blanca/diagnóstico por imagen , Antioxidantes , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/genética , Imagen de Difusión Tensora
18.
J Heart Lung Transplant ; 41(12): 1679-1688, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36216693

RESUMEN

BACKGROUND: Our recent work has challenged 4°C as an optimal lung preservation temperature by showing storage at 10°C to allow for the extension of preservation periods. Despite these findings, the impact of 10°C storage has not been evaluated in the setting of injured donor lungs. METHODS: Aspiration injury was created through bronchoscopic delivery of gastric juice (pH: 1.8). Injured donor lungs (n = 5/group) were then procured and blindly randomized to storage at 4°C (on ice) or at 10°C (in a thermoelectric cooler) for 12 hours. A third group included immediate transplantation. A left lung transplant was performed thereafter followed by 4 hours of graft evaluation. RESULTS: After transplantation, lungs stored at 10°C showed significantly better oxygenation when compared to 4°C group (343 ± 43 mm Hg vs 128 ± 76 mm Hg, p = 0.03). Active metabolism occurred during the 12 hours storage period at 10°C, producing cytoprotective metabolites within the graft. When compared to lungs undergoing immediate transplant, lungs preserved at 10°C tended to have lower peak airway pressures (p = 0.15) and higher dynamic lung compliances (p = 0.09). Circulating cell-free mitochondrial DNA within the recipient plasma was significantly lower for lungs stored at 10°C in comparison to those underwent immediate transplant (p = 0.048), alongside a tendency of lower levels of tissue apoptotic cell death (p = 0.075). CONCLUSIONS: We demonstrate 10°C as a potentially superior storage temperature for injured donor lungs in a pig model when compared to the current clinical standard (4°C) and immediate transplantation. Continuing protective metabolism at 10°C for donor lungs may result in better transplant outcomes.


Asunto(s)
Trasplante de Pulmón , Daño por Reperfusión , Animales , Modelos Animales de Enfermedad , Pulmón/metabolismo , Preservación de Órganos , Daño por Reperfusión/metabolismo , Porcinos , Temperatura
19.
J Affect Disord ; 319: 229-234, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36155232

RESUMEN

BACKGROUND: We previously reported that in early-stage bipolar disorder (BD), frontal and temporal lobe volume reductions were more pronounced in patients with elevated BMI and more rapidly progressive in patients with additional weight gain. Elevated BMI is a pro-inflammatory state, and inflammation may contribute to brain volume reductions in BD. However, few studies have investigated the relationship between inflammation and brain volumes. METHODS: We conducted a proof-of-concept analysis to investigate whether a composite measure of total peripheral inflammation derived from 9 cytokines predicted lower frontal and temporal lobe volumes, measured with 3 T MRI, in early-stage BD. RESULTS: In 25 early-stage patients, linear regression models showed that greater total inflammation predicted lower white matter (WM) volumes in the left frontal lobe (ß = -0.691, p = 0.001) and bilateral temporal lobes (left: ß = -0.617, p = 0.003; right: ß = -0.636, p = 0.001). Greater inflammation also predicted lower right frontal WM, although this did not survive correction for multiple comparisons (ß = -0.557, p = 0.020). It did not predict frontal or temporal GM. Total inflammation was a stronger predictor of lower WM volumes than were individual cytokines. LIMITATIONS: Although the magnitude of the association between total inflammation and lower WM volumes was large, our sample was small. Our findings require confirmation in further studies, with samples large enough to determine whether inflammation mediates the relationship between elevated BMI and brain volumes. CONCLUSIONS: This study supports the hypothesis that inflammation contributes to brain volume reductions in BD and suggests that total inflammatory burden best captures the impact of inflammation on the brain.


Asunto(s)
Trastorno Bipolar , Sustancia Blanca , Humanos , Trastorno Bipolar/diagnóstico por imagen , Lóbulo Temporal/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Lóbulo Frontal/diagnóstico por imagen , Imagen por Resonancia Magnética , Encéfalo , Inflamación/diagnóstico por imagen , Citocinas
20.
EBioMedicine ; 83: 104210, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35952495

RESUMEN

BACKGROUND: Cold static preservation (CSP) at higher temperatures (10°C) has been recently shown as an optimal strategy up to 24-36h of preservation. Here, we hypothesized that alternating 10°C static storage with cycles of normothermic ex vivo lung perfusion (EVLP) would provide conditions for cellular "recharge", allowing for multi-day lung preservation. METHODS: Donor lungs from male Yorkshire pigs were preserved using 10°C CSP with two cycles of 4h EVLP. After a total of 3 days of preservation, a left lung transplant was performed followed by 4h of graft evaluation. As controls, 2 lungs were preserved solely with continuous 10°C preservation for 3 days and transplanted. FINDINGS: For animals receiving lungs preserved using a cyclic EVLP protocol, lung function and histological structures were stable and the recipient systemic partial pressure of oxygen/fraction of inspired oxygen (P/F Ratio) after excluding the contralateral lung was 422 ± 61 mmHg. In contrast, lungs preserved solely in continuous cold static storage at 10°C for 72h developed massive lung failure, resulting in recipient death. Metabolomic analysis revealed that EVLP plays a critical role in the re-vitalization of key central carbon energy metabolites (Glucose, Succinate, N-Acetyl Aspartate) and reducing the expression of the inflammasome activation marker CASP1. INTERPRETATION: In conclusion, we demonstrate for the first time the feasibility of 3-day lung preservation leading to excellent early post-transplant outcomes. The thoughtful combination of cold storage (10°C) and intermittent EVLP can open new opportunities in organ transplantation. FUNDING: This work was supported by the UHN Foundation (Grant#1013612).


Asunto(s)
Inflamasomas , Preservación de Órganos , Animales , Carbono , Glucosa , Pulmón/patología , Masculino , Preservación de Órganos/métodos , Oxígeno , Perfusión/métodos , Succinatos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA