Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Intervalo de año de publicación
1.
Braz J Microbiol ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39297913

RESUMEN

OBJECTIVES: This study addressed the need for new treatments for severe Candida infections, especially resistant strains. It evaluated the antifungal potential of geraniol alone and with fluconazole against various Candida spp., including resistant strains, and investigated geraniol's mechanism of action using flow cytometry. METHODS: The research assessed the inhibitory effects of geraniol on the growth of various Candida species at concentrations ranging from 110 to 883 µg/ml. The study also explored the potential synergistic effects when geraniol was combined with fluconazole. The mechanism of action was investigated through flow cytometry, with a particular emphasis on key enzymes associated with plasma membrane synthesis, membrane permeability changes, mitochondrial membrane depolarization, reactive oxygen species (ROS) induction, and genotoxicity. RESULTS: Geraniol demonstrated significant antifungal activity against different Candida species, inhibiting growth at concentrations within the range of 110 to 883 µg/ml. The mechanism of action appeared to be multifactorial. Geraniol was associated with the inhibition of crucial enzymes involved in plasma membrane synthesis, increased membrane permeability, induction of mitochondrial membrane depolarization, elevated ROS levels, and the presence of genotoxicity. These effects collectively contributed to cell apoptosis. CONCLUSIONS: Geraniol, alone and in combination with fluconazole, shows promise as a potential therapeutic option for Candida spp. INFECTIONS: Its diverse mechanism of action, impacting crucial cellular processes, highlights its potential as an effective antifungal agent. Further research into geraniol's therapeutic applications may aid in developing innovative strategies to address Candida infections, especially those resistant to current therapies.

2.
Future Microbiol ; 19(16): 1365-1375, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39235062

RESUMEN

Aim: To evaluate the antifungal activity of amlodipine against strains of Candida spp. and to its possible mechanism of action.Methods: Broth microdilution tests were used to determine the minimum inhibitory concentration, while the synergistic activity was evaluated by calculating the fractional inhibitory concentration index. The action of amlodipine against biofilms was determined using the MTT assay and its possible mechanism of action was investigated through flow cytometry tests.Results: Amlodipine showed MICs ranging from 62.5 to 250 µg/ml, in addition to action against pre-formed and forming biofilms, with reductions between 50 and 90%. Amlodipine increases the externalization of phosphatidylserine and reduces the cell viability of fungal cells, suggesting apoptosis.Conclusion: Amlodipine had good antifungal activity against planktonic cells and biofilms of Candida spp., by leading the cells to apoptosis.


Candida is a type of fungus that can cause diseases. This fungus became stronger over time and drugs can no longer kill them easily, so it is important to find new drugs. We decided to study whether amlodipine, a drug used for heart disease, has action against Candida. We discovered that amlodipine make fungi weaker. We still need to do more studies to find out if amlodipine can help prevent Candida diseases.


Asunto(s)
Amlodipino , Antifúngicos , Biopelículas , Candida , Pruebas de Sensibilidad Microbiana , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Antifúngicos/farmacología , Candida/efectos de los fármacos , Candida/fisiología , Candida/crecimiento & desarrollo , Amlodipino/farmacología , Viabilidad Microbiana/efectos de los fármacos , Apoptosis/efectos de los fármacos , Humanos , Citometría de Flujo , Plancton/efectos de los fármacos , Plancton/crecimiento & desarrollo
3.
Future Microbiol ; 19(15): 1309-1320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101446

RESUMEN

Aim: Evaluate the anticandidal effect of Croton heliotropiifolius Kunth essential oil and its interaction with azoles and N-acetylcysteine (NAC) against planktonic cells and biofilms.Materials & methods: Broth microdilution and checkerboard methods were used to evaluate the individual and combined activity with fluconazole and itraconazole (ITRA). The antibiofilm effect of the oil was assessed in 96-well plates alone and combined with ITRA and NAC, and cytotoxicity determined by MTT.Results: The oil inhibited all Candida species growth. The activity was enhanced when associated with ITRA and NAC for planktonic cells and biofilms in formation. The effective concentrations were lower than the toxic ones to V79 cells.Conclusion: C. heliotropiifolius Kunth essential oil is an anticandidal alternative, and can be associated with ITRA and NAC.


Candida is a type of fungus that can cause disease in people. In recent years, the number of available drugs to treat this disease have declined. It is important to search for new drugs. Plants are often used to improve health, so we tested the essential oil of a plant called Croton heliotropiifolius to see if it could kill the fungus. We found that the essential oil could kill the fungus, and could be used with other drugs to improve their effects.


Asunto(s)
Acetilcisteína , Antifúngicos , Biopelículas , Candida , Croton , Itraconazol , Pruebas de Sensibilidad Microbiana , Aceites Volátiles , Croton/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Itraconazol/farmacología , Antifúngicos/farmacología , Acetilcisteína/farmacología , Biopelículas/efectos de los fármacos , Candida/efectos de los fármacos , Sinergismo Farmacológico , Animales , Línea Celular , Fluconazol/farmacología , Cricetinae
4.
Braz J Microbiol ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39198376

RESUMEN

Candida species are among the priority pathogens in the area of research and development. Due to the problems associated with resistance to antifungals, new therapeutic alternatives are necessary. In this regard, drug repositioning has gained prominence. The objective of this study was to evaluate the activity of three tricyclic antidepressants (TCAs) - amitriptyline (AMT), nortriptyline (NOR) and clomipramine (CLO) - isolated or associated with antifungals against strains of Candida spp., as well as to analyze the possible mechanism of action. Among the methods used were broth microdilution tests, tolerance level assessment, checkerboard assays, flow cytometry and fluorescence microscopy. Furthermore, Candida cells were visualized after treatments by scanning electron microscopy (SEM). AMT presented MIC 50% in the range of 16 to 128 µg/mL, NOR from 8 to 128 µg/mL, and CLO from 8 to 64 µg/mL, with all three TCAs having a fungicidal inhibitory action profile. For these TCAs, there was synergism with amphotericin B (AMB) in 100% of the isolates. In association with fluconazole (FLC) and itraconazole (ITR), there were mostly indifferent interactions. TCAs isolated and associated with AMB reduced cell viability, promoted DNA fragmentation and damage, caused mitochondrial depolarization, externalization of phosphatidylserine, produced reactive oxygen species (ROS), decreased reduced glutathione (GSH) and increased carbonyl protein levels, causing morphological changes. The results suggest the antifungal mechanism of the TCAs works via the apoptotic pathway.

5.
Braz J Microbiol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179891

RESUMEN

The increase in fungal resistance is a major public health concern. In this context, Candida spp. is an important genus related to invasive diseases, especially in immunosuppressed patients. The relevance of alternative approaches to increasing fungal resistance stands out, in which products of natural origin demonstrate potential antifungal activity in vitro against Candida spp. In this sense, this work aimed to evaluate the in vitro activity of tannic acid against Candida spp. Minimum inhibitory concentration (MIC) was determined for tannic acid and the antifungals, and the checkerboard assay was performed to analyze the interactions between them. Furthermore, we evaluated the tannic acid antibiofilm activity and its possible mechanism of action. Tannic acid showed MIC ranging to 0.06 to 0.5 µg/ml and showed no loss of effectiveness when combined with antifungals. Also, is safe at the concentrations it exerts its antifungal activity in pre-formed biofilms, as demonstrated by IC50 in murine fibroblasts cells and the hemolytic assay. Additionally, its mechanisms of action can be related with induction of signals that lead to apoptosis in fungal cells.

6.
J Med Microbiol ; 73(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38979984

RESUMEN

Introduction. The development of new antifungal drugs has become a global priority, given the increasing cases of fungal diseases together with the rising resistance to available antifungal drugs. In this scenario, drug repositioning has emerged as an alternative for such development, with advantages such as reduced research time and costs.Gap statement. Propafenone is an antiarrhythmic drug whose antifungal activity is poorly described, being a good candidate for further study.Aim. This study aims to evaluate propafenone activity against different species of Candida spp. to evaluate its combination with standard antifungals, as well as its possible action mechanism.Methodology. To this end, we carried out tests against strains of Candida albicans, Candida auris, Candida parapsilosis, Candida tropicalis, Candida glabrata and Candida krusei based on the evaluation of the MIC, minimum fungicidal concentration and tolerance level, along with checkerboard and flow cytometry tests with clinical strains and cell structure analysis by scanning electron microscopy (SEM).Results. The results showed that propafenone has a 50% MIC ranging from 32 to 256 µg ml-1, with fungicidal activity and positive interactions with itraconazole in 83.3% of the strains evaluated. The effects of the treatments observed by SEM were extensive damage to the cell structure, while flow cytometry revealed the apoptotic potential of propafenone against Candida spp.Conclusion. Taken together, these results indicate that propafenone has the potential for repositioning as an antifungal drug.


Asunto(s)
Antifúngicos , Candida , Pruebas de Sensibilidad Microbiana , Propafenona , Antifúngicos/farmacología , Candida/efectos de los fármacos , Candida/crecimiento & desarrollo , Propafenona/farmacología , Humanos , Itraconazol/farmacología , Sinergismo Farmacológico , Farmacorresistencia Fúngica/efectos de los fármacos , Candidiasis/microbiología , Candidiasis/tratamiento farmacológico , Reposicionamiento de Medicamentos
7.
Microb Pathog ; 193: 106769, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955237

RESUMEN

The bacterium Escherichia coli is one of the main causes of urinary tract infections. The formation of bacterial biofilms, especially associated with the use of urinary catheters, contributes to the establishment of recurrent infections and the development of resistance to treatment. Strains of E. coli that produce extended-spectrum beta-lactamases (ESBL) have a greater ability to form biofilms. In addition, there is a lack of drugs available in the market with antibiofilm activity. Promethazine (PMZ) is an antihistamine known to have antimicrobial activity against different pathogens, including in the form of biofilms, but there are still few studies of its activity against ESBL E. coli biofilms. The aim of this study was to evaluate the antimicrobial activity of PMZ against ESBL E. coli biofilms, as well as to assess the application of this drug as a biofilm prevention agent in urinary catheters. To this end, the minimum inhibitory concentration and minimum bactericidal concentration of PMZ in ESBL E. coli strains were determined using the broth microdilution assay and tolerance level measurement. The activity of PMZ against the cell viability of the in vitro biofilm formation of ESBL E. coli was analyzed by the MTT colorimetric assay and its ability to prevent biofilm formation when impregnated in a urinary catheter was investigated by counting colony-forming units (CFU) and confirmed by scanning electron microscopy (SEM). PMZ showed bactericidal activity and significantly reduced (p < 0.05) the viability of the biofilm being formed by ESBL E. coli at concentrations of 256 and 512 µg/ml, as well as preventing the formation of biofilm on urinary catheters at concentrations starting at 512 µg/ml by reducing the number of CFUs, as also observed by SEM. Thus, PMZ is a promising candidate to prevent the formation of ESBL E. coli biofilms on abiotic surfaces.


Asunto(s)
Antibacterianos , Biopelículas , Escherichia coli , Pruebas de Sensibilidad Microbiana , Prometazina , Catéteres Urinarios , beta-Lactamasas , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Prometazina/farmacología , Escherichia coli/efectos de los fármacos , beta-Lactamasas/metabolismo , Catéteres Urinarios/microbiología , Antibacterianos/farmacología , Humanos , Infecciones Urinarias/microbiología , Viabilidad Microbiana/efectos de los fármacos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico
8.
Future Microbiol ; 19(8): 667-679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38864708

RESUMEN

Aim: The present study investigated the antimicrobial effectiveness of a rhamnolipid complexed with arginine (RLMIX_Arg) against planktonic cells and biofilms of methicillin-resistant Staphylococcus aureus (MRSA). Methodology: Susceptibility testing was performed using the Clinical & Laboratory Standards Institute protocol: M07-A10, checkerboard test, biofilm in plates and catheters and flow cytometry were used. Result: RLMIX_Arg has bactericidal and synergistic activity with oxacillin. RLMIX_Arg inhibits the formation of MRSA biofilms on plates at sub-inhibitory concentrations and has antibiofilm action against MRSA in peripheral venous catheters. Catheters impregnated with RLMIX_Arg reduce the formation of MRSA biofilms. Conclusion: RLMIX_Arg exhibits potential for application in preventing infections related to methicillin-resistant S. aureus biofilms.


[Box: see text].


Asunto(s)
Antibacterianos , Arginina , Biopelículas , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Tensoactivos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Arginina/farmacología , Arginina/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Tensoactivos/farmacología , Tensoactivos/química , Glucolípidos/farmacología , Glucolípidos/química , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/prevención & control , Infecciones Estafilocócicas/tratamiento farmacológico , Oxacilina/farmacología , Sinergismo Farmacológico
9.
Biofouling ; 40(2): 165-176, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38425095

RESUMEN

Dual-species biofilms formed by Candida albicans and Staphylococcus aureus have high virulence and drug resistance. In this context, biosurfactants produced by Pseudomonas aeruginosa have been widely studied, of which a new derivative (RLmix_Arg) stands out for possible application in formulations. The objective of this study was to evaluate the antibiofilm activity of RLmix_Arg, both alone and incorporated in a gel prepared with Pluronic F-127, against dual-species biofilms of fluconazole-resistant C. albicans (FRCA) and methicillin-resistant S. aureus (MRSA) in impregnated catheters. Broth microdilution tests, MTT reduction assays of mature biofilms, impregnation of RLmix_Arg and its gel in peripheral venous catheters, durability tests and scanning electron microscopy (SEM) were performed. RLmix_Arg showed antimicrobial activity against Candida spp. and S. aureus, by reducing the cell viability of mixed biofilms of FRCA and MRSA, and preventing their formation in a peripheral venous catheter. The incorporation of this biosurfactant in the Pluronic F-127 gel considerably enhanced its antibiofilm activity. Thus, RLmix_Arg has potential application in gels for impregnation in peripheral venous catheters, helping to prevent development of dual-species biofilms of FRCA and MRSA.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Fluconazol/farmacología , Candida albicans , Staphylococcus aureus , Resistencia a la Meticilina , Biopelículas , Poloxámero/farmacología , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Catéteres , Antibacterianos/farmacología
10.
J Med Microbiol ; 73(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38385528

RESUMEN

Introduction. Candida albicans and Staphylococcus aureus are recognized for their development of resistance and biofilm formation. New therapeutic alternatives are necessary in this context.Hypothesis. Etomidate shows potential application in catheters against mixed biofilms of fluconazole-resistant C. albicans and methicillin-resistant S. aureus (MRSA).Aim. The present study aimed to evaluate the activity of etomidate against mixed biofilms of fluconazole-resistant C. albicans and MRSA.Methodology. The action of etomidate against mature biofilms was verified through the evaluation of biomass and cell viability, and its ability to prevent biofilm formation in peripheral venous catheters was determined based on counts of colony forming units (c.f.u.) and confirmed by morphological analysis through scanning electron microscopy (SEM).Results. Etomidate generated a reduction (P<0.05) in biomass and cell viability starting from a concentration of 250 µg ml-1. In addition, it showed significant ability to prevent the formation of mixed biofilms in a peripheral venous catheter, as shown by a reduction in c.f.u. SEM revealed that treatment with etomidate caused substantial damage to the fungal cells.Conclusion. The results showed the potential of etomidate against polymicrobial biofilms of fluconazole-resistant C. albicans and MRSA.


Asunto(s)
Etomidato , Staphylococcus aureus Resistente a Meticilina , Fluconazol/farmacología , Candida albicans , Antifúngicos/farmacología , Etomidato/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana
11.
J Toxicol Environ Health A ; 87(3): 91-107, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37927232

RESUMEN

Croton heliotropiifolius Kunth, popularly known as "velame," is a shrub that resides in northeastern Brazil. The essential oil of C. heliotropiifolius contains high concentrations of volatile compounds in the leaves and is widely used in folk medicine for many purposes as an antiseptic, analgesic, sedative, and anti-inflammatory agent. Due to the apparent limited amount of information, the aim of this study was to determine the cytotoxic potential of essential oil extracted from leaves of C. heliotropiifolius, utilizing different human cancer cell lines (HL-60, leukemia; HCT-116, colon; MDA-MB435, melanoma; SF295, glioblastoma) and comparison to murine fibroblast L929 cell line. The chemical characterization of the essential oil revealed the presence of large amounts of monoterpenes and sesquiterpenes, the majority of which were aristolene (22.43%), germacrene D (11.38%), ɣ-terpinene (10.85%), and limonene (10.21%). The essential oil exerted significant cytotoxicity on all cancer cells, with low activity on murine L929 fibroblasts, independent of disruption of cell membranes evidenced by absence of hemolytic activity. The cytotoxicity identified was associated with oxidative stress, which culminated in mitochondrial respiration dysfunction and direct or indirect DNA damage (strand breaks and oxidative damage), triggering cell death via apoptosis. Our findings suggest that extracts of essential oil of C. Heliotropiifolius may be considered as agents to be used therapeutically in treatment of certain cancers.


Asunto(s)
Antineoplásicos , Croton , Aceites Volátiles , Sesquiterpenos , Humanos , Animales , Ratones , Aceites Volátiles/farmacología , Croton/química , Línea Celular Tumoral , Sesquiterpenos/análisis , Hojas de la Planta/química
12.
J Med Microbiol ; 72(10)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37801011

RESUMEN

Species of the genus Candida, characterized as commensals of the human microbiota, are opportunistic pathogens capable of generating various types of infections with high associated costs. Considering the limited pharmacological arsenal and the emergence of antifungal-resistant strains, the repositioning of drugs is a strategy used to search for new therapeutic alternatives, in which minocycline and doxycycline have been evaluated as potential candidates. Thus, the objective was to evaluate the in vitro antifungal activity of two tetracyclines, minocycline and doxycycline, and their possible mechanism of action against fluconazole-resistant strains of Candida spp. The sensitivity test for antimicrobials was performed using the broth microdilution technique, and the pharmacological interaction with fluconazole was also analysed using the checkerboard method. To analyse the possible mechanisms of action, flow cytometry assays were performed. The minimum inhibitory concentration obtained was 4-427 µg ml-1 for minocycline and 128-512 µg ml-1 for doxycycline, and mostly indifferent and additive interactions with fluconazole were observed. These tetracyclines were found to promote cellular alterations that generated death by apoptosis, with concentration-dependent reactive oxygen species production and reduced cell viability. Therefore, minocycline and doxycycline present themselves as promising study molecules against Candida spp.


Asunto(s)
Antifúngicos , Fluconazol , Humanos , Fluconazol/farmacología , Antifúngicos/farmacología , Candida , Minociclina/farmacología , Doxiciclina/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Fúngica
13.
J Mycol Med ; 33(4): 101431, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37666030

RESUMEN

Fungal infections caused by Cryptococcus spp. pose a threat to health, especially in immunocompromised individuals. The available arsenal of drugs against cryptococcosis is limited, due to their toxicity and/or lack of accessibility in low-income countries, requiring more therapeutic alternatives. Selective serotonin reuptake inhibitors (SSRIs), through drug repositioning, are a promising alternative to broaden the range of new antifungals against Cryptococcus spp. This study evaluates the antifungal activity of three SSRIs, sertraline, paroxetine, and fluoxetine, against Cryptococcus spp. strains, as well as assesses their possible mechanism of action. Seven strains of Cryptococcus spp. were used. Sensitivity to SSRIs, fluconazole, and itraconazole was evaluated using the broth microdilution assay. The interactions resulting from combinations of SSRIs and azoles were investigated using the checkerboard assay. The possible action mechanism of SSRIs against Cryptococcus spp. was evaluated through flow cytometry assays. The SSRIs exhibited in vitro antifungal activity against Cryptococcus spp. strains, with minimum inhibitory concentrations ranging from 2 to 32 µg/mL, and had synergistic and additive interactions with azoles. The mechanism of action of SSRIs against Cryptococcus spp. involved damage to the mitochondrial membrane and increasing the production of reactive oxygen species, resulting in loss of cellular viability and apoptotic cell death. Fluoxetine also was able to cause significant damage to yeast DNA. These findings demonstrate the in vitro antifungal potential of SSRIs against Cryptococcus spp. strains.


Asunto(s)
Cryptococcus neoformans , Cryptococcus , Humanos , Antifúngicos/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Fluoxetina/farmacología , Fluconazol/farmacología , Azoles , Pruebas de Sensibilidad Microbiana
14.
J Med Microbiol ; 72(9)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37707372

RESUMEN

Introduction. Antibiotic resistance is a major threat to public health, particularly with methicillin-resistant Staphylococcus aureus (MRSA) being a leading cause of antimicrobial resistance. To combat this problem, drug repurposing offers a promising solution for the discovery of new antibacterial agents.Hypothesis. Menadione exhibits antibacterial activity against methicillin-sensitive and methicillin-resistant S. aureus strains, both alone and in combination with oxacillin. Its primary mechanism of action involves inducing oxidative stress.Methodology. Sensitivity assays were performed using broth microdilution. The interaction between menadione, oxacillin, and antioxidants was assessed using checkerboard technique. Mechanism of action was evaluated using flow cytometry, fluorescence microscopy, and in silico analysis.Aim. The aim of this study was to evaluate the in vitro antibacterial potential of menadione against planktonic and biofilm forms of methicillin-sensitive and resistant S. aureus strains. It also examined its role as a modulator of oxacillin activity and investigated the mechanism of action involved in its activity.Results. Menadione showed antibacterial activity against planktonic cells at concentrations ranging from 2 to 32 µg ml-1, with bacteriostatic action. When combined with oxacillin, it exhibited an additive and synergistic effect against the tested strains. Menadione also demonstrated antibiofilm activity at subinhibitory concentrations and effectively combated biofilms with reduced sensitivity to oxacillin alone. Its mechanism of action involves the production of reactive oxygen species (ROS) and DNA damage. It also showed interactions with important targets, such as DNA gyrase and dehydroesqualene synthase. The presence of ascorbic acid reversed its effects.Conclusion. Menadione exhibited antibacterial and antibiofilm activity against MRSA strains, suggesting its potential as an adjunct in the treatment of S. aureus infections. The main mechanism of action involves the production of ROS, which subsequently leads to DNA damage. Additionally, the activity of menadione can be complemented by its interaction with important virulence targets.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Oxacilina , Oxacilina/farmacología , Vitamina K 3/farmacología , Meticilina , Staphylococcus aureus , Especies Reactivas de Oxígeno , Antibacterianos/farmacología , Biopelículas
15.
J Med Microbiol ; 72(2)2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36762524

RESUMEN

Candida spp. infections are a serious health problem, especially in patients with risk factors. The acquisition of resistance, often associated with biofilm production, makes treatment more difficult due to the reduced effectiveness of available antifungals. Drug repurposing is a good alternative for the treatment of infections by Candida spp. biofilms. The present study evaluated the in vitro antibiofilm activity of sertraline in reducing the cell viability of forming and matured biofilms, in addition to elucidating whether effective concentrations are safe. Sertraline reduced biofilm cell viability by more than 80 % for all Candida species tested, acting at low and safe concentrations, both on mature biofilm and in preventing its formation, even the one with highest virulence. Its preventive mechanism seemed to be related to binding with ALS3. These data indicate that sertraline is a promising drug with anticandidal biofilm potential in safe doses. However, further studies are needed to elucidate the antibiofilm mechanism and possible application of pharmaceutical forms.


Asunto(s)
Candida , Candidiasis , Humanos , Sertralina/farmacología , Sertralina/uso terapéutico , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candidiasis/tratamiento farmacológico , Biopelículas , Pruebas de Sensibilidad Microbiana , Candida albicans
16.
Probiotics Antimicrob Proteins ; 15(5): 1221-1233, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35995908

RESUMEN

The emergence of antibiotic resistance poses a serious and challenging threat to healthcare systems, making it imperative to discover novel therapeutic options. This work reports the isolation and characterization of a thermostable trypsin inhibitor from chia (Salvia hispanica L.) seeds, with antibacterial activity against Staphylococcus aureus sensitive and resistant to methicillin. The trypsin inhibitor ShTI was purified from chia seeds through crude extract heat treatment, followed by affinity and reversed-phase chromatography. Tricine-SDS-PAGE revealed a single glycoprotein band of ~ 11 kDa under nonreducing conditions, confirmed by mass spectrometry analysis (11.558 kDa). ShTI was remarkably stable under high temperatures (100 °C; 120 min) and a broad pH range (2-10; 30 min). Upon exposure to DTT (0.1 M; 120 min), ShTI antitrypsin activity was partially lost (~ 38%), indicating the participation of disulfide bridges in its structure. ShTI is a competitive inhibitor (Ki = 1.79 × 10-8 M; IC50 = 1.74 × 10-8 M) that forms a 1:1 stoichiometry ratio for the ShTI:trypsin complex. ShTI displayed antibacterial activity alone (MICs range from 15.83 to 19.03 µM) and in combination with oxacillin (FICI range from 0.20 to 0.33) against strains of S. aureus, including methicillin-resistant strains. Overproduction of reactive oxygen species and plasma membrane pore formation are involved in the antibacterial action mode of ShTI. Overall, ShTI represents a novel candidate for use as a therapeutic agent for the bacterial management of S. aureus infections.


Asunto(s)
Oxacilina , Staphylococcus aureus , Oxacilina/farmacología , Oxacilina/análisis , Inhibidores de Tripsina/farmacología , Inhibidores de Tripsina/análisis , Salvia hispanica , Antibacterianos/farmacología , Semillas/química , Combinación de Medicamentos
17.
J. Health Biol. Sci. (Online) ; 10(1): 1-12, 01/jan./2022. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1382369

RESUMEN

Objective: this systematic review aims to compile literature data on the antimicrobial action of Selective Serotonin Reuptake Inhibitors (SSRI). Methods: To this end, the articles in this review were searched in the PubMed database between the years 2010 to 2020, using terms found in MESH as descriptors. The PRISMA flow diagram was used to analyze the process flow of the research. Later, inclusion and exclusion criteria and eligibility for data extraction and statistical analysis were applied. Results: Thus, of 252 articles found, 13 were used for this systematic review. The period in which there were more publications was in 2016-2017. All articles demonstrated the antimicrobial activity of ISRS, such as sertraline, fluoxetine, and paroxetine, in addition to their synergistic activity with some antifungals and antibacterial. Conclusion: With this, it could be concluded that the repositioning of non-antibiotic drugs that have antimicrobial activity is a promising alternative for the scientific community and, in the future, in clinical practice


Objetivo: compilar dados da literatura sobre a ação antimicrobiana dos Inibidores Seletivos de Recaptação de Serotonina (ISRS). Métodos: os artigos desta revisão foram pesquisados na base de dados PubMed, entre os anos de 2010 a 2020, utilizando, como descritores, termos encontrados no MESH. O fluxograma PRISMA foi utilizado para analisar o fluxo do processo da pesquisa. Posteriormente, foram aplicados os critérios de inclusão e exclusão e de elegibilidade para extração de dados e análise estatística. Resultados: dos 252 artigos encontrados, 13 foram utilizados para esta revisão sistemática. O período em que houve mais publicações foi em 2016-2017. Todos os artigos demonstraram a atividade antimicrobiana do ISRS, como sertralina, fluoxetina e paroxetina, além de sua atividade sinérgica com alguns antifúngicos e antibacterianos. Conclusão: o reposicionamento de medicamentos não antibióticos que possuam atividade antimicrobiana é uma alternativa promissora para a comunidade científica e, futuramente, na prática clínica.


Asunto(s)
Inhibidores Selectivos de la Recaptación de Serotonina , Antibacterianos , Antifúngicos , Bacterias , Serotonina , Fluoxetina , Inhibidores Selectivos de la Recaptación de Serotonina , Paroxetina , Sertralina , PubMed , Hongos
18.
J. Health Biol. Sci. (Online) ; 10(1): 1-6, 01/jan./2022. tab
Artículo en Inglés | LILACS | ID: biblio-1411461

RESUMEN

Objectives: The purpose of this study was to evaluate the mutagenic potential of fluoxetine and fluoxetine-galactomannan. Methods: Chromosomal aberration test and Salmonella typhimurium/microsome mutagenicity assay. Results: The results showed that fluoxetine (250 µg/mL) can cause chromosomal breaks of treated leukocytes and increase the frequency of reversion of the tester strains of S. typhimurium / microsome assay only at the highest concentration (5 mg/mL), while fluoxetine encapsulated in galactomannan did not cause these changes (leukocytes and S. typhimuriums strains). Conclusion: In summary, fluoxetine showed a mutagenic effect detectable only at high concentrations in both eukaryotic and prokaryotic models. Furthermore, the fluoxetine/galactomannan complex, in this first moment, prevented the mutagenicity attributed to fluoxetine, emphasizing that the present encapsulation process can be an alternative in preventing these effects in vitro.


Objetivos: avaliar o potencial mutagênico da fluoxetina e da fluoxetina-galactomanana. Métodos: Teste de aberração cromossômica e ensaio de mutagenicidade de Salmonella typhimurium /microssoma. Resultados: a fluoxetina (250 µg/mL) pode causar quebras cromossômicas de leucócitos tratados e aumentar a frequência de reversão das cepas testadoras de S. typhimurium /microssoma apenas na concentração mais alta (5 mg/mL), enquanto a fluoxetina encapsulada em galactomanano não causou essas alterações (leucócitos e cepas de S. typhimurium). Conclusão: a fluoxetina mostrou um efeito mutagênico detectável apenas em altas concentrações em modelos eucarióticos e procarióticos. Além disso, o complexo fluoxetina/galactomanan, neste primeiro momento, evitou a mutagenicidade atribuída à fluoxetina, ressaltando que o presente processo de encapsulamento pode ser uma alternativa na prevenção desses efeitos in vitro.


Asunto(s)
Fluoxetina , Aberraciones Cromosómicas , Salmonella typhimurium , Rotura Cromosómica , Microsomas , Pruebas de Mutagenicidad
19.
J. Health Biol. Sci. (Online) ; 10(1): 1-9, 01/jan./2022. ilus, tab
Artículo en Portugués | LILACS | ID: biblio-1411707

RESUMEN

Objetivo: avaliar, por meio da literatura existente, a interação farmacológica de antifúngicos e quimioterápicos. Métodos: foi realizado um estudo de revisão sistemática de acordo com o diagrama de fluxo do processo de pesquisa PRISMA. Os descritores escolhidos foram: drug interactions, CYP inhibitors, antifungal e antineoplastic, mediante análise realizada no MESH. As bases de dados escolhidas foram: Pubmed, Lilacs e Scielo. O período considerado para busca de artigos publicados foi de 2015 a 2020. Resultados: no banco de dados PubMed, foram encontrados 54 artigos, enquanto, nas bases Lilacs e Scielo, não foram encontrados artigos de acordo com os critérios estabelecidos. Dos 54 artigos, 7 foram selecionados para esta revisão. O intervalo com maior número de publicações foi de 2015-2016. Os antifúngicos mais citados nos resultados foram os inibidores fortes da CYP (Cetoconazol, Itraconazol e Voriconazol). Conclusão: a revisão sistemática da literatura mostrou que não existe uma correlação exata entre a interação farmacológica dos antifúngicos com os antineoplásicos, quando administrados de forma simultânea. São necessários mais estudos atuais que possam monitorar e estabelecer, de forma precisa, a relação dessas interações.


Objective: to evaluate, through the existing literature, the pharmacological interaction of antifungals and chemotherapeutics. Methods: a systematic review study was conducted according to the PRISMA research process flow diagram. The descriptors were chosen by analysis performed in MESH. The descriptors chosen were: drug interactions, CYP inhibitors, antifungal and antineoplastic. The databases chosen were: Pubmed, Lilacs, and Scielo. The period considered for the search of published articles was from 2015 to 2020. Results: in the PubMed database, 54 articles were found, while in the Lilacs and Scielo databases, no articles were found according to the established criteria. Of the 54 articles, 8 were selected for this review. The interval that had the highest number of publications was 2015-2016. The most cited antifungal drugs in the results were the strong CYP inhibitors. Conclusion: the systematic review of the literature showed that there is no exact correlation between the pharmacological interaction of antifungals with antineoplastic drugs when administered simultaneously. More current studies are needed that can accurately monitor and establish the relationship between these interactions.


Asunto(s)
Interacciones Farmacológicas , Itraconazol , Quimioterapia , Inhibidores del Citocromo P-450 CYP3A , LILACS , Cetoconazol , Antifúngicos , Antineoplásicos
20.
J. Health Biol. Sci. (Online) ; 10(1): 1-10, 01/jan./2022. tab, ilus
Artículo en Inglés | LILACS | ID: biblio-1378456

RESUMEN

Objective: This study aimed to evaluate the interactions of di- and tri-terpenes from Stillingia loranthacea with the enzyme NSP16-NSP10 of SARS-CoV-2, important for viral replication. Methods: The molecular docking technique was used to evaluate this interaction. Results: The analysis showed that the evaluated compounds obtained RMSD values of 0.888 to 1.944 Å and free energy of -6.1 to -9.4 kcal/mol, with the observation of hydrogen bonds, salt bridges, and pi-sulfur, pi-alkyl, and hydrophobic interactions. Conclusion: Thus, the results obtained show the potential of the compounds analyzed against the selected target. Since computer simulations are only an initial step in projects for the development of antiviral drugs, this study provides important data for future research.


Objetivo: avaliar as interações de di- e tri-terpenos de Stillingia loranthacea com a enzima NSP16-NSP10 de SARS-CoV-2, importante para a replicação viral. Métodos: A técnica de docking molecular foi utilizada para avaliar essa interação. Resultados: A análise mostrou que os compostos avaliados obtiveram valores de RMSD de 0,888 a 1,944 Å e energia livre de -6,1 a -9,4 kcal/mol, observando-se ligações de hidrogênio, pontes salinas e pi-enxofre, pi-alquil, e interações hidrofóbicas. Conclusão: Assim, os resultados obtidos mostram o potencial dos compostos analisados frente ao alvo selecionado. Como as simulações computacionais são apenas um passo inicial nos projetos de desenvolvimento de medicamentos antivirais, este estudo fornece dados importantes para pesquisas futuras.


Asunto(s)
SARS-CoV-2 , Antivirales , Terpenos , Replicación Viral , Enzimas , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA