Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Microbiol ; 11: 1060, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547514

RESUMEN

Leishmania infantum is a flagellated protozoan and one of the main causative agents of visceral leishmaniasis. This disease usually affects the human reticuloendothelial system, can cause death and available therapies may lead to serious side effects. Since it is a neglected tropical disease, the incentives for the development of new drugs are insufficient. It is important to know Leishmania virulence factors that contribute most to the disease in order to develop drugs. In the present work, we have produced L. infantum prolyl oligopeptidase (rPOPLi) in Escherichia coli, and investigated its biochemical properties as well as the effect of POP inhibitors on its enzymatic activity and on the inhibition of the macrophage infection by L. infantum. The optimal activity occurred at pH 7.5 and 37°C in the presence of DTT, the latter increased rPOPLi catalytic efficiency 5-fold on the substrate N-Suc-Gly-Pro-Leu-Gly-Pro-AMC. The enzyme was inhibited by TPCK, TLCK and by two POP specific inhibitors, Z-Pro-prolinal (ZPP, IC50 4.2 nM) and S17092 (IC50 3.5 nM). Besides being a cytoplasmic enzyme, POPLi is also found in punctuate structures within the parasite cytoplasm or associated with the parasite plasma membrane in amastigotes and promastigotes, respectively. Interestingly, S17092 and ZPP prevented parasite invasion in murine macrophages, supporting the involvement of POPLi in the invasive process of L. infantum. These data suggest POPLi as a virulence factor that offers potential as a target for designing new antileishmanial drugs.

2.
Chem Biodivers ; 15(5): e1800066, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29633553

RESUMEN

The objective of this study was to determine cytotoxic activity, hemolytic activity, and to evaluate the ability of the essential oil from Cinnamodendron dinisii to induce DNA fragmentation of human lymphocytes. The essential oil was obtained by hydrodistillation. Cytotoxic activity was determined by the MTT method. Hemolytic activity was evaluated by spectrophotometric quantification of hemoglobin released by erythrocytes. Damage to lymphocyte DNA molecules was assessed by the Comet assay. The essential oil under study showed high cytotoxic activity on Vero cells (CC50 = 35.72 µg/mL) and induced hemolysis in both hematocrits, besides leading to the oxidation of hemoglobin released. The genotoxic activity of C. dinisii essential oil was also observed, which induced concentration-dependent DNA fragmentation of human lymphocytes and, at 50 µL/mL, it was more active than the positive control. The essential oil from C. dinisii has a toxic action, suggesting a special attention in the application of this oil to health-promoting activities; however, among its components, there are molecules with potential for future application in anticancer therapies.


Asunto(s)
Linfocitos/efectos de los fármacos , Magnoliopsida/química , Aceites Volátiles/farmacología , Animales , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Fragmentación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Hemólisis/efectos de los fármacos , Humanos , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Relación Estructura-Actividad , Células Vero
3.
Rev. bras. farmacogn ; 21(1): 47-52, jan.-fev. 2011. tab
Artículo en Inglés | LILACS | ID: lil-580334

RESUMEN

The chemical composition of the essential oil from the leaves of Pelargonium odoratissimum (L.) L'Hér., Geraniaceae, was determined and the antimicrobial activities against the Aspergillus flavus CML 1816, Aspergillus carbonarius CML1815 and Aspergillus parasiticus CMLA 817 fungi, as well the Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25 992 bacteria were evaluated. The essential oil was isolated by steam distillation using a modified Clevenger apparatus, and its constituents were identified and quantified by GC/MS and GC-FID analyses. In vitro bioanalytical testing was performed using a completely randomized design. The concentrations of essential oil employed ranged from 0.1 to 2 μL.mL-1 (in dimethyl sulfoxide) for the fungus species and from 1 to 500 μL.mL-1 for the bacteria. The diameters of the inhibition zones formed for bacteria and the mean diameters of mycelial growth in perpendicular directions for fungi were measured, followed by calculation of the percentage of inhibition. The essential oil from the leaves of P. odoratissimum furnished methyleugenol (96.80 percent), a phenylpropanoid. This essential oil inhibited the growth of fungi (100 percent inhibition) and exhibited a small effect on the bacteria at the concentrations tested.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA