Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ambio ; 36(5): 379-86, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17847802

RESUMEN

Soil biological activity was calculated on a daily basis, using standard meteorological data from African weather stations, a simple soil water model, and commonly used assumptions regarding the relations between temperature, soil water content, and biological activity. The activity factor r(e_clim) is calculated from daily soil moisture and temperature, thereby taking the daily interaction between temperature and moisture into account. Annual mean r(e_clim) was normalized to 1 in Central Sweden (clay loam soil, no crop), where the original calibration took place. Since soils vary in water storage capacity and plant cover will affect transpiration, we used this soil under no crop for all sites, thereby only including climate differences. The Swedish r(e_clim) value, 1, corresponds to ca. 50% annual mass loss of, e.g., cereal straw incorporated into the topsoil. African mean annual r(e_clim) values varied between 1.1 at a hot and dry site (Faya, Chad) and 4.7 at a warm and moist site (Brazzaville, Congo). Sites in Kenya ranged between r(e_clim) = 2.1 at high altitude (Matanya) and 4.1 in western Kenya (Ahero). This means that 4.1 times the Swedish C input to soil is necessary to maintain Swedish soil carbon levels in Ahero, if soil type and management are equal. Diagrams showing daily r(e_clim) dynamics are presented for all sites, and differences in within-year dynamics are discussed. A model experiment indicated that a Swedish soil in balance with respect to soil carbon would lose 41% of its soil carbon during 30 y, if moved to Ahero, Kenya. If the soil was in balance in Ahero with respect to soil carbon, and then moved to Sweden, soil carbon mass would increase by 64% in 30 y. The validity of the methodology and results is discussed, and r(e_clim) is compared with other climate indices. A simple method to produce a rough estimate of r(e_clim) is suggested.


Asunto(s)
Carbono/metabolismo , Bases de Datos Factuales , Clima Desértico , Conceptos Meteorológicos , Suelo , África del Sur del Sahara , Estándares de Referencia , Suecia
2.
Glob Chang Biol ; 11(12): 2153-2163, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34991280

RESUMEN

Yearly, per-area carbon sequestration rates are used to estimate mitigation potentials by comparing types and areas of land management in 1990 and 2000 and projected to 2010, for the European Union (EU)-15 and for four country-level case studies for which data are available: UK, Sweden, Belgium and Finland. Because cropland area is decreasing in these countries (except for Belgium), and in most European countries there are no incentives in place to encourage soil carbon sequestration, carbon sequestration between 1990 and 2000 was small or negative in the EU-15 and all case study countries. Belgium has a slightly higher estimate for carbon sequestration than the other countries examined. This is at odds with previous reports of decreasing soil organic carbon stocks in Flanders. For all countries except Belgium, carbon sequestration is predicted to be negligible or negative by 2010, based on extrapolated trends, and is small even in Belgium. The only trend in agriculture that may be enhancing carbon stocks on croplands at present is organic farming, and the magnitude of this effect is highly uncertain. Previous studies have focused on the potential for carbon sequestration and have shown quite significant potential. This study, which examines the sequestration likely to occur by 2010, suggests that the potential will not be realized. Without incentives for carbon sequestration in the future, cropland carbon sequestration under Article 3.4 of the Kyoto Protocol will not be an option in EU-15.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA