Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EPJ Quantum Technol ; 9(1): 25, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36227029

RESUMEN

The National Aeronautics and Space Administration's Deep Space Quantum Link mission concept enables a unique set of science experiments by establishing robust quantum optical links across extremely long baselines. Potential mission configurations include establishing a quantum link between the Lunar Gateway moon-orbiting space station and nodes on or near the Earth. This publication summarizes the principal experimental goals of the Deep Space Quantum Link. These goals, identified through a multi-year design study conducted by the authors, include long-range teleportation, tests of gravitational coupling to quantum states, and advanced tests of quantum nonlocality.

2.
Entropy (Basel) ; 24(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35455152

RESUMEN

In recent years an increasing number of papers have attempted to mimic or supplant quantum field theory in discussions of issues related to gravity by the tools and through the perspective of quantum information theory, often in the context of alternative quantum theories. In this article, we point out three common problems in such treatments. First, we show that the notion of interactions mediated by an information channel is not, in general, equivalent to the treatment of interactions by quantum field theory. When used to describe gravity, this notion may lead to inconsistencies with general relativity. Second, we point out that in general one cannot replace a quantum field by a classical stochastic field, or mock up the effects of quantum fluctuations by that of classical stochastic sources (noises), because in so doing important quantum features such as coherence and entanglement will be left out. Third, we explain how under specific conditions semi-classical and stochastic theories indeed can be formulated from their quantum origins and play a role at certain regimes of interest.

3.
Entropy (Basel) ; 24(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35052030

RESUMEN

Proposed quantum experiments in deep space will be able to explore quantum information issues in regimes where relativistic effects are important. In this essay, we argue that a proper extension of quantum information theory into the relativistic domain requires the expression of all informational notions in terms of quantum field theoretic (QFT) concepts. This task requires a working and practicable theory of QFT measurements. We present the foundational problems in constructing such a theory, especially in relation to longstanding causality and locality issues in the foundations of QFT. Finally, we present the ongoing Quantum Temporal Probabilities program for constructing a measurement theory that (i) works, in principle, for any QFT, (ii) allows for a first- principles investigation of all relevant issues of causality and locality, and (iii) it can be directly applied to experiments of current interest.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(2 Pt 1): 021118, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21405829

RESUMEN

Spin-echo experiments are often said to constitute an instant of antithermodynamic behavior in a concrete physical system that violates the second law of thermodynamics. We argue that a proper thermodynamic treatment of the effect should take into account the correlations between the spin and the translational degrees of freedom of the molecules. To this end, we construct an entropy functional using Boltzmann macrostates that incorporate both spin and translational degrees of freedom. With this definition there is nothing special in the thermodynamics of spin echoes: dephasing corresponds to Hamiltonian evolution and leaves the entropy unchanged; dissipation increases the entropy. In particular, there is no phase of entropy decrease in the echo. We also discuss the definition of macrostates from the underlying quantum theory and we show that the decay of net magnetization provides a faithful measure of entropy change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA