Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 43(7): 2070-9, 2004 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-14967047

RESUMEN

Assembly of the inorganic core (Mn(4)O(x)Ca(1)Cl(y)) of the water oxidizing enzyme of oxygenic photosynthesis generates O(2) evolution capacity via the photodriven binding and photooxidation of the free inorganic cofactors within the cofactor-depleted enzyme (apo-WOC-PSII) by a process called photoactivation. Using in vitro photoactivation of spinach PSII membranes, we identify a new lower affinity site for bicarbonate interaction in the WOC. Bicarbonate addition causes a 300% stimulation of the rate and a 50% increase in yield of photoassembled PSII centers when using Mn(2+) and Ca(2+) concentrations that are 10-50-fold larger range than previously examined. Maintenance of a fixed Mn(2+)/Ca(2+) ratio (1:500) produces the fastest rates and highest yields of photoactivation, which has implications for intracellular cofactor homeostasis. A two-step (biexponential) model is shown to accurately fit the assembly kinetics over a 200-fold range of Mn(2+) concentrations. The first step, the binding and photooxidation of Mn(2+) to Mn(3+), is specifically stimulated via formation of a ternary complex between Mn(2+), bicarbonate, and apo-WOC-PSII, having a proposed stoichiometry of [Mn(2+)(HCO(3)(-))]. This low-affinity bicarbonate complex is thermodynamically easier to oxidize than the aqua precursor, [Mn(2+)(OH(2))]. The photooxidized intermediate, [Mn(3+)(HCO(3)(-))], is longer lived and increases the photoactivation yield by suppressing irreversible photodamage to the cofactor-free apo-WOC-PSII (photoinhibition). Bicarbonate does not affect the second (rate-limiting) dark step of photoactivation, attributed to a protein conformational change. Together with the previously characterized high-affinity site, these results reveal that bicarbonate is a multifunctional "native" cofactor important for photoactivation and photoprotection of the WOC-PSII complex.


Asunto(s)
Bicarbonatos/química , Manganeso/química , Oxígeno/química , Complejo de Proteína del Fotosistema II/química , Proteínas de Plantas/química , Procesamiento Proteico-Postraduccional , Agua/química , Apoenzimas/química , Apoenzimas/metabolismo , Bicarbonatos/metabolismo , Calcio/química , Calcio/metabolismo , Coenzimas/química , Coenzimas/metabolismo , Activación Enzimática , Evolución Molecular , Cinética , Manganeso/metabolismo , Modelos Químicos , Oxígeno/metabolismo , Fotólisis , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/metabolismo , Spinacia oleracea , Tilacoides/enzimología , Agua/metabolismo
2.
Biochemistry ; 41(3): 974-80, 2002 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-11790121

RESUMEN

The role of D2-Tyr160 (Y(D)), a photooxidizable residue in the D2 reaction center polypeptide of photosystem II (PSII), was investigated in both wild type and a mutant strain (D2-Tyr160Phe) in which phenylalanine replaces Y(D) in the cyanobacterium Synechocystis sp. (strain PCC 6803). Y(D) is the symmetry-related tyrosine that is homologous to the essential photoactive Tyr161(Y(Z)) of the D1 polypeptide of PSII. We compared the flash-induced yield of O(2) in intact, functional PSII centers from both wild-type and mutant PSII core complexes. The yield of O(2) in the intact holo-enzyme was found to be identical in the mutant and wild-type PSII cores using long (saturating) pulses or continuous illumination, but was observed to be appreciably reduced in the mutant using short (nonsaturating) light pulses (<50 ms). We also compared the rates of the first two kinetically resolved steps of photoactivation. Photoactivation is the assembly process for binding of the inorganic cofactors to the apo-water oxidation/PSII complex (apo-WOC-PSII) and their light-induced photooxidation to form the functional Mn(4)Ca(1)Cl(x)() core required for O(2) evolution. We show that the D2-Tyr160Phe mutant cores can assemble a functional WOC from the free inorganic cofactors, but at a much slower rate and with reduced quantum efficiency vs wild-type PSII cores. Both of these observations imply that the presence of Y(D)(*) leads to a more efficient photooxidation of the Mn cluster relative to deactivation (reductive processes). One possible explanation for this behavior is that the phenolic proton on Y(D) is retained within the reaction center following Y(D) oxidation. The positive charge, likely shared by D2-His189 and other residues, raises the reduction potential of P(680)(+)/P(680), thereby increasing the driving force for the oxidation of Mn(4)Y(Z). There is, therefore, a competitive advantage to organisms that retain the Y(D) residue, possibly explaining its retention in all sequences of psbD (encoding the D2 polypeptide) known to date. We also find that the sequence of metal binding steps during assembly of apo-WOC-PSII centers in cyanobacteria cores differs from that in higher plants. This is seen by a reduced calcium affinity at its effector site and reduced competition for binding to the Mn(II) site, resulting in acceleration of the initial lagtime by Ca(2+), in contrast to retardation in spinach. Ca(2+) binding to its effector site promotes the stability of the photointermediates (IM1 and above) by suppressing unproductive decay.


Asunto(s)
Cianobacterias/metabolismo , Oxidorreductasas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Tirosina , Agua/metabolismo , Sustitución de Aminoácidos , Calcio/farmacología , Cinética , Manganeso/farmacología , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Complejo de Proteína del Fotosistema II , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
3.
Biochim Biophys Acta ; 1503(1-2): 52-68, 2001 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-11115624

RESUMEN

At the request of the organizer of this special edition, we have attempted to do several things in this manuscript: (1) we present a mini-review of recent, selected, works on the light-induced inorganic biogenesis (photoactivation), composition and structure of the inorganic core responsible for photosynthetic water oxidation; (2) we summarize a new proposal for the evolutionary origin of the water oxidation catalyst which postulates a key role for bicarbonate in formation of the inorganic core; (3) we summarize published studies and present new results on what has been learned from studies of 'inorganic mutants' in which the endogenous cofactors (Mn(n+), Ca2+, Cl-) are substituted; (4) the first DeltapH changes measured during the photoactivation process are reported and used to develop a model for the stepwise photo-assembly process; (5) a comparative analysis is given of data in the literature on the kinetics of substrate water exchange and peroxide binding/dismutation which support a mechanistic model for water oxidation in general; (6) we discuss alternative interpretations of data in the literature with a view to forecast new avenues where progress is needed.


Asunto(s)
Oxígeno/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Agua/química , Sitios de Unión , Calcio/química , Catalasa/química , Cloruros/química , Evolución Molecular , Manganeso/química , Espectrometría de Masas , Modelos Químicos , Oxidación-Reducción , Fotosíntesis , Factores de Tiempo
4.
Biochemistry ; 39(20): 6060-5, 2000 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-10821678

RESUMEN

The proposed role for bicarbonate (HCO(3)(-)) as an intrinsic cofactor within the water-oxidizing complex (WOC) of photosystem II (PSII) [Klimov et al. (1997) Biochemistry 36, 16277-16281] was tested by investigation of its influence on the kinetics and yield of photoactivation, the light-induced assembly of the functional inorganic core (Mn(4)O(y)Ca(1)Cl(x)) starting from the cofactor-depleted apo-WOC-PSII center and free Mn(2+), Ca(2+), and Cl(-). Two binding sites for bicarbonate were found that stimulate photoactivation by accelerating the formation and suppressing the decay, respectively, of the first light-induced assembly intermediate, IM(1) [apo-WOC-Mn(OH)(2)(+)]. A high-affinity bicarbonate site (K(D)

Asunto(s)
Bicarbonatos/química , Dióxido de Carbono/química , Manganeso/metabolismo , Oxígeno/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Agua/química , Atmósfera/química , Bicarbonatos/metabolismo , Calcio/química , Calcio/metabolismo , Cinética , Luz , Manganeso/química , Oxígeno/metabolismo , Fotólisis , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema II , Spinacia oleracea , Agua/metabolismo
5.
Proc Natl Acad Sci U S A ; 96(25): 14288-93, 1999 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-10588698

RESUMEN

Isolated subcomplexes of photosystem II from spinach (CP47RC), composed of D1, D2, cytochrome b(559), CP47, and a number of hydrophobic small subunits but devoid of CP43 and the extrinsic proteins of the oxygen-evolving complex, were shown to reconstitute the Mn(4)Ca(1)Cl(x) cluster of the water-splitting system and to evolve oxygen. The photoactivation process in CP47RC dimers proceeds by the same two-step mechanism as observed in PSII membranes and exhibits the same stoichiometry for Mn(2+), but with a 10-fold lower affinity for Ca(2+) and an increased susceptibility to photodamage. After the lower Ca(2+) affinity and the 10-fold smaller absorption cross-section for photons in CP47 dimers is taken into account, the intrinsic rate constant for the rate-limiting calcium-dependent dark step is indistinguishable for the two systems. The monomeric form of CP47RC also showed capacity to photoactivate and catalyze water oxidation, but with lower activity than the dimeric form and increased susceptibility to photodamage. After optimization of the various parameters affecting the photoactivation process in dimeric CP47RC subcores, 18% of the complexes were functionally reconstituted and the quantum efficiency for oxygen production by reactivated centers approached 96% of that observed for reconstituted photosystem II-enriched membranes.


Asunto(s)
Manganeso/química , Oxígeno/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Dimerización , Luz , Complejo de Proteína del Fotosistema II
6.
Biochemistry ; 38(22): 7200-9, 1999 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-10353831

RESUMEN

The size and charge density requirements for metal ion binding to the high-affinity Mn2+ site of the apo-water oxidizing complex (WOC) of spinach photosystem II (PSII) were studied by comparing the relative binding affinities of alkali metal cations, divalent metals (Mg2+, Ca2+, Mn2+, Sr2+), and the oxo-cation UO22+. Cation binding to the apo-WOC-PSII protein was measured by: (1) inhibition of the rate and yield of photoactivation, the light-induced recovery of O2 evolution by assembly of the functional Mn4Ca1Clx, core from its constituent inorganic cofactors (Mn2+, Ca2+, and Cl-); and by (2) inhibition of the PSII-mediated light-induced electron transfer from Mn2+ to an electron acceptor (DCIP). Together, these methods enable discrimination between inhibition at the high- and low-affinity Mn2+ sites and the Ca2+ site of the apo-WOC-PSII. Unexpectedly strong binding of large alkali cations (Cs+ >> Rb+ > K+ > Na+ > Li+) was found to smoothly correlate with decreasing cation charge density, exhibiting one of the largest Cs+/Li+ selectivities (>/=5000) for any known chelator. Both photoactivation and electron-transfer measurements at selected Mn2+ and Ca2+ concentrations reveal that Cs+ binds to the high-affinity Mn2+ site with a slightly greater affinity (2-3-fold at pH 6.0) than Mn2+, while binding about 10(4)-fold more weakly to the Ca2+-specific site required for reassembly of functional O2 evolving centers. In contrast to Cs+, divalent cations larger than Mn2+ bind considerably more weakly to the high-affinity Mn2+ site (Mn2+ >> Ca2+ > Sr2+). Their affinities correlate with the hydrolysis constant for formation of the metal hydroxide by hydrolysis of water: Me2+aq --> [MeOH]+aq + H+aq. Along with the strong stimulation of the rate of photoactivation by alkaline pH, these metal cation trends support the interpretation that [MnOH]+ is the active species that forms upon binding of Mn2+aq to apo-WOC. Further support for this interpretation is found by the unusually strong inhibition of Mn2+ photooxidation by the linear uranyl cation (UO22+). The intrinsic binding constant for [MnOH]+ to apo-WOC was determined using a thermodynamic cycle to be K = 4.0 x 10(15) M-1 (at pH 6.0), consistent with a high-affinity, preorganized, multidentate coordination site. We propose that the selectivity for binding [MnOH]+, a linear low charge-density monocation, vs symmetrical Me2+ dications is functionally important for assembly of the WOC by enabling: (1) discrimination against higher charge density alkaline earth cations (Mg2+ and Ca2+) and smaller alkali metal cations (Na+ and K+) that are present in considerably greater abundance in vivo, and thus would suppress photoactivation; and (2) higher affinity binding of the one Ca2+ ion or the remaining three Mn2+ ions via coordination to form mu-hydroxo-bridged intermediates, apo-WOC-[Mn(mu-OH)2Mn]3+ or apo-WOC-[Mn(mu-OH)Ca]3+, during subsequent assembly steps of the native Mn4Ca1Clx core. In contrast to more acidic Me2+ divalent ion inhibitors of the high-affinity Mn2+ site, like Ca2+ and Sr2+, Cs+ does not accelerate the decay of the first light-induced intermediate, IM1, formed during photoactivation (attributed to apo-WOC-[Mn(OH)2]+). The inability of Cs+ to promote decay of IM1, despite having comparable affinity as Mn2+, is consistent with its considerably weaker Lewis acidity, resulting in the reprotonation of IM1 by water becoming the rate-limiting step for decay prior to displacement of Mn2+. All four different lines of evidence provide a self-consistent picture indicating that the initial step in assembly of the WOC involves high-affinity binding of [MnOH]+.


Asunto(s)
Cesio/química , Manganeso/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Compuestos de Uranio/química , Agua/química , Álcalis/química , Apoproteínas/antagonistas & inhibidores , Apoproteínas/química , Apoproteínas/metabolismo , Sitios de Unión/efectos de los fármacos , Cationes Bivalentes/química , Cationes Monovalentes/química , Cesio/metabolismo , Transporte de Electrón/efectos de los fármacos , Semivida , Cinética , Manganeso/antagonistas & inhibidores , Manganeso/metabolismo , Oxidación-Reducción/efectos de los fármacos , Fotólisis , Proteínas del Complejo del Centro de Reacción Fotosintética/antagonistas & inhibidores , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema II , Spinacia oleracea , Tirosina/antagonistas & inhibidores , Compuestos de Uranio/metabolismo , Agua/metabolismo
7.
Biochemistry ; 36(38): 11342-50, 1997 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-9298953

RESUMEN

Two new intermediates are described which form in the dark as precursors to the light-induced assembly of the photosynthetic water oxidation complex (WOC) from the inorganic components. Mn2+ binds to the apo-WOC-PSII protein in the absence of calcium at a high-affinity site. By using a hydrophobic chelator to remove Mn2+ and Ca2+ from the WOC and nonspecific Fe3+, a new EPR signal becomes visible upon binding of Mn2+ to this site, characterized by six-line 55Mn hyperfine structure (DeltaHpp = 96 +/- 1 G) and effective g = 8.3. These features indicate a high-spin electronic ground state (S = 5/2) for Mn2+ and a strong ligand field with large anisotropy. This signal is eliminated if excess Ca2+ or Mg2+ is present. A second Mn2+ EPR signal forms in place of this signal upon addition of Ca2+ in the dark. The yield of this Ca-induced Mn signal is optimum at a ratio of 2 Mn/PSII, and saturates with increasing [Ca2+] >/= 8 mM, exhibiting a calcium dissociation constant of KD = 1.4 mM. The EPR signal of the Ca-induced Mn center at 25 K is asymmetric with major g value of approximately 2.04 (DeltaHpp = 380 G) and a shoulder near g approximately 3.1. It also exhibits resolved 55Mn hyperfine splitting with separation DeltaHpp = 42-45 G. These spectral features are diagnostic of a variety of weakly interacting Mn2(II, II) pairs with electronic spins that are magnetic dipolar coupled in the range of intermanganese separations 4.1 +/- 0.4 A, and commonly associated with one or two carboxylate bridges. The calcium requirement for induction of the Mn2(II,II) signal matches the value observed for steady-state O2 evolution (Michaelis constant, KM approximately 1.4 mM), and for light-induced assembly of the WOC by photoactivation. The Ca-induced Mn2(II,II) center is a more efficient electron donor to the photooxidized tyrosine radical, TyrZ+, than is the mononuclear Mn center present in the absence of Ca2+. The Ca-induced Mn2(II,II) signal serves as a precursor for photoactivation of the functional WOC and is abolished by the presence of Mg2+. Formation of the Mn2(II,II) EPR signal by addition of Ca2+ correlates with reduction of flash-induced catalase activity, indicating that calcium modulates the accessibility or reactivity of the Mn2(II,II) core with H2O2. We propose that calcium organizes the binding site for Mn ions in the apo-WOC protein and may even interact directly with the Mn2(II,II) pair via solvent or protein-derived bridging ligands.


Asunto(s)
Calcio/farmacología , Manganeso/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Catalasa/efectos de la radiación , Oscuridad , Espectroscopía de Resonancia por Spin del Electrón , Luz , Manganeso/química , Modelos Químicos , Oxidación-Reducción , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de los fármacos , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Complejo de Proteína del Fotosistema II , Spinacia oleracea , Agua/metabolismo
8.
Biochemistry ; 36(29): 8914-22, 1997 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-9220979

RESUMEN

The process of photoactivation, the assembly of a functional water-oxidizing complex (WOC) from the apoproteins of photosystem II of higher plants and inorganic cofactors (Mn2+, Ca2+, and Cl-), was known from earlier works to be a two-step kinetic process, requiring two light-induced processes separated by a slower dark period. However, these steps had not been directly resolved in any kinetic experiment, until development of an ultrasensitive polarographic O2 electrode and synthesis of an improved chelator for cofactor removal allowed direct kinetic resolution of the first pre-steady state intermediate [Ananyev, G. M. & Dismukes, G. C. (1996a) Biochemistry 35, 4102-4109]. Herein, the dependence of the rates of each of the first two light steps and the dark step of photoactivation was directly determined in spinach PSII membranes over a range of calcium and manganese concentrations at least 10-fold lower than those possible using commercial O2 electrodes. The following results were obtained. (1) One Mn2+ ion binds and is photooxidized to Mn3+ at a high-affinity site, forming the first light-induced intermediate, IM1. Formation of IM1 is coupled to the dissociation of a bound Ca2+ ion either located in the Mn site or coupled to it. (2) The inhibition constant for Ca2+ dissociation from this site is equal to 1.5 mM. (3) The dissociation constant of Mn2+ at this high-affinity site is equal to 8 microM at the optimum calcium concentration for O2-evolving activity of 8 mM, in agreement with the high-affinity site for electron donation to PSII. (4) Prior to the next photolytic step, one Ca2+ ion must bind at its effector site so that stable photooxidation of a second Mn2+ ion can occur, forming the second light-induced intermediate, IM2. This dark process is the rate-determining step. (5) The Michaelis constant for recovery of O2 evolution by Ca2+ binding at this effector site (Km) is equal to 1.4 mM, a value that is the same as that measured for the calcium requirement for O2 evolution in intact PSII. (6) The low quantum yield for the formation of IM2 from IM1 increases linearly with the duration of the dark period up to the longest period we could examine (10 s). Accordingly, the rate limitation in the second photolytic step originates from a slow calcium-induced dark rearrangement of the first intermediate, IM1, which we propose to be a protein conformational change that allows stable binding of the next Mn2+ ion. We further propose that the single Ca2+ ion which is required for assembly of the Mn4 cluster is equivalent to the Ca2+ ion which functions at the "gatekeeper" site in intact O2-evolving centers, where it plays a role in limiting substrate access to the Mn4 cluster [Sivaraja, M., et al. (1989) Biochemistry 28, 9459-9464; Tso, J., et al., (1991) Biochemistry 30, 4734-4739]. A molecular model for photoactivation is proposed and discussed.


Asunto(s)
Calcio/metabolismo , Manganeso/metabolismo , Oxidorreductasas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Transporte de Electrón , Cinética , Modelos Químicos , Fotoquímica , Complejo de Proteína del Fotosistema II , Spinacia oleracea
9.
Biochemistry ; 35(46): 14608-17, 1996 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-8931559

RESUMEN

The kinetics of pulsed-light photoactivation, the light-induced reassembly of the water-oxidizing complex (WOC) of PSII in the presence of essential inorganic cofactors, has been studied using two improvements: a new efficient chelator, N,N,N',N'-tetrapropionato-1,3-bis(aminomethyl)benzene (TPDBA), for complete extraction of {Mn4} and Ca2+ and an ultrasensitive polarographic cell for O2 detection [Ananyev, G.M., & Dismukes, G.C. (1996) Biochemistry 35, 4102-4109]. Measurements have been made of the initial half-time, t1/2 (sum of the lag time for formation of the first intermediate, IM1, plus the half-time for formation of the second intermediate, IM2), and the steady-state yield, Yss, for recovery of O2 evolution (proportional to the number of active centers). The following conclusions have been reached: (1) cations (Ca2+, Mg2+, and Na+) slow the rate of photoactivation, even though Ca2+ is essential for activity. Two distinct mechanisms appear to be involved: binding to one or both of the first two Mn(2+)-specific sites and screening of negative charges on apo-WOC that are responsible for concentrating Mn2+ ions by electrostatic steering; (2) the Michaelis constant for the calcium requirement for Yss at sufficiently low Mn2+ concentrations (8 microM) that competition at the calcium site does not occur is K(m) = 1.4 mM. Numerically, K(m) is the same for reactivation of O2 evolution in Ca-depleted PSII membranes which retain four Mn ions; (3) in the absence of Ca2+ but in the presence of saturating amounts of Mn2+ (8 Mn/apo-WOC) and Cl-(35 mM) assembly of a stable tetra-Mn cluster occurs neither under illumination nor in the dark after subsequent addition of CaCl2. However, in the presence of suboptimal concentrations of calcium required for maximum Yss, calcium-dependent assembly of stable yet inactive clusters occurs in the light; (4) protons in equilibrium with the buffer greatly increase the half-time 3-fold between pH 6.75 and 5.4, indicating ionization of one or more protons from the first photo-oxidized intermediate formed prior to the rate-limiting step (photo-oxidation of the second Mn2+); (5) the lipophilic membrane soluble anion tetraphenylboron (TPB-), a known reductant of intact WOC, increases the half-time 2.5-fold (< or = 40 microM) and paradoxically stimulates Yss by 50% at 20 microM concentration. These results suggest that TPB- increases the local concentration of Mn2+ adjacent to apo-WOC (Yss increase), while also reducing the S2 and S3 states of the intact WOC at higher concentrations (t1/2 increase). The effects of anions and cations indicates that overcoming the surface potential of the membrane/protein PSII complex may play an important role in the kinetics of reassembly of the {Mn4} cluster; (6) the ratio Y4/Y3 in the kinetics of O2 evolution from a series of single-turnover flashes, a ratio that typically reflects the probability of misses (alpha), grows noticeably larger with increasing extent of recovery of O2 evolving activity and also with increase in the amount of Mn2+, indicating competition between substrate water and excess Mn2+ for reduction of the functional {Mn4} cluster. On the basis of these results, we extend the model for photoactivation to include the antagonistic effects of H+ and Ca2+ in the formation of the first two intermediates.


Asunto(s)
Calcio/metabolismo , Magnesio/metabolismo , Manganeso/metabolismo , Oxígeno/metabolismo , Fotosíntesis , Sodio/metabolismo , Bencilaminas/metabolismo , Fenómenos Químicos , Química Física , Cinética , Oxidación-Reducción , Propionatos/metabolismo , Electricidad Estática
10.
Biochemistry ; 35(13): 4102-9, 1996 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-8672445

RESUMEN

The process of photoactivation, the assembly of the water-oxidizing complex (WOC) of photosystem II (PSII) membranes, has been examined using two major improvements in methodology. First a new lipophilic chelator, N,N,N',N'-tetrapropionate-1,3-bis(aminomethyl)benzene (TPDBA), has been used that permits complete extraction of both manganese and calcium and the three extrinsic WOC polypeptides while minimizing damage to the apo-PSII protein and, importantly, eliminating the need to use reductants. Second, an ultrasensitive, fast-response, polarographic cell and detection system were built. The apparatus features (a) an ultrabright red light-emitted diode (LED) for controlling the light intensity, pulse duration, and dark intervals, features critical for minimization of photoinhibition; (b) a microvolume (5 microL) O2 polarographic cell (Clark type) fitted with a thin silicone membrane for rapid response (100 ms); and (c) DC/AC preamplifier integrated into the microcell and interfaced to a bandpass AC amplifier. The sensitivity enables detection of approximately 5 x 10(-14) mol of O2 per flash at a signal to noise = 5/1. These improvements permit 100-fold lower Mn concentrations to be explored. Under optimum conditions, complete recovery of O2-evolving activity could be restored compared to that of PSII membranes depleted of the three extrinsic polypeptides (35% Vmax vs intact PSII). Titration of the photoactivation steady-state O2 yield, Yss, and the half-time for recovery, t1/2, vs Mn concentration demonstrate that 4.0 Mn/P680 are cooperatively taken up at 95% restoration of Yss and that 1.1-1.2 Mn atoms are involved in the rate-limiting photolytic step under steady-state conditions. Due to minimization of photoihibition, this intermediate exhibits a single exponential recovery kinetic over the entire population of PSII centers. Mn atoms in excess of 4 Mn/P680 accelerate the rate of photoactivation but decrease the yield above 8-10 Mn/P680. Maxima in both Yss and t1/2 are observed at similar electrochemical potentials of the medium, 380 and 340 mV, respectively. We attribute this maximum to either elimination of a recombination reaction between the redox-active tyrosine-161 of the D1 polypeptide (Y(Z)+) and an electron acceptor, possibly cytochrome b559, or stabilization of an intermediate in photoactivation. At low Mn2+ concentrations, a new pre-steady-state kinetic intermediate which binds fewer than 4 Mn atoms can be directly observed. This early kinetic phase has a rate that depends on Mn concentration and is independent of the electron acceptor identity and concentration.


Asunto(s)
Manganeso/metabolismo , Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Bencilaminas/farmacología , Sitios de Unión , Calcio/metabolismo , Quelantes/farmacología , Ferricianuros/metabolismo , Cinética , Luz , Oxidación-Reducción , Complejo de Proteína del Fotosistema II , Propionatos/farmacología , Spinacia oleracea/metabolismo , Factores de Tiempo , Agua/metabolismo
11.
Photosynth Res ; 41(2): 327-38, 1994 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24310115

RESUMEN

In the present study the light induced formation of superoxide and intrinsic superoxide dismutase (SOD) activity in PS II membrane fragments and D1/D2/Cytb559-complexes from spinach have been analyzed by the use of ferricytochrome c (cyt c(III)) reduction and xanthine/xanthine oxidase as assay systems. The following results were obtained: 1.) Photoreduction of Cyt c (III) by PS II membrane fragments is induced by addition of sodium azide, tetracyane ethylene (TCNE) or carbonylcyanide-p-trifluoromethoxy-phenylhydrazone (FCCP) and after removal of the extrinsic polypeptides by a 1M CaCl2-treatment. This activity which is absent in control samples becomes completely inhibited by the addition of exogenous SOD. 2.) The TCNE induced cyt c(III) photoreduction by PS II membrane fragments was found to be characterized by a half maximal concentration of c1/2=10 µM TCNE. Simultaneously, TCNE inhibits the oxygen evolution rate of PS II membrane fragments with c1/2≈ 3 µM. 3.) The photoproduction of O2 (-) is coupled with H(+)-uptake. This effect is diminished by the addition of the O2 (-)-trap cyt c(III). 4.) D1/D2/Cytb559-complexes and PS II membrane fragments deprived of the extrinsic proteins and manganese exhibit no SOD-activity but are capable of producing O2 (-) in the light if a PS II electron donor is added.Based on these results the site(s) of light induced superoxide formation in PS II is (are) inferred to be located at the acceptor side. A part of the PS II donor side and Cyt b559 in its HP-form are proposed to provide an intrinsic superoxide dismutase (SOD) activity.

12.
Photosynth Res ; 38(3): 409-16, 1993 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24317997

RESUMEN

The present study describes the formation of different forms of peroxide in Photosystem II (PS II) by using a chemiluminescence detection technique. Four chemiluminescence signals (A, B, C and D) of the luminolperoxidase (Lu-Per) system, which detects peroxide, are found in illuminated O2-evolving Photosystem II (PS II) membrane fragments isolated from spinach. Signal A ('free peroxide') peaking around 0.2-0.3 s after mixing PS II membrane fragments with Lu-Per is eliminated by catalase or removal of oxygen from the suspension and ascribed to O2 interaction with reduced PS II electron acceptors. In contrast, signal B peaking around 1.5 min remains largely unaffected under anaerobic conditions, as well as in the presence of catalase (20 µg/ml). Under flash illumination the extent of this signal exhibits a weak period four oscillation (maximum at third and 7th flash). Its yield increases up to the third flash, but is close to zero in the fourth flash. An analogous behaviour is observed in flashes 5 to 8. Signal B is ascribed to Lu-Per interaction with the water-oxidizing system being in S2 and/or S3-state. Signal C ('bound peroxide') detected as free peroxide after acid decomposition of illuminated PS II particles is observed on the 1 st flash and oscillates with period 2 with superposition of period 4. It is evidently related to peroxide either released from S2 or formed at S2 upon acid shock treatment. Signal D ('slowly released peroxide') peaking around 2-3 s after mixing is observed in samples after various treatments (LCC-incubation, washing with 1 M NaCl at pH 8 or with 1 M CaCl2, Cl(-)-depletion) that lead to at least partial removal of the extrinsic proteins of 18, 24 and 33 kDa without Mn extraction. The average amplitude of this signal corresponds with a yield of about 0.2 H2O2 molecules per RC and flash. In a flash train, the extent of signal D exhibits an oscillation pattern with a minimum at the 3rd flash. We assume that these treatments increase the release of 'bound' peroxide (upon injection into the Lu-Per assay) either formed in the normal oxidative pathway of the water oxidase in the S2 or the S3-state or give rise to peroxide formation due to higher accessibility of the Mn-cluster to water molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA