Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 8516, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595802

RESUMEN

In this paper we investigate quasinormal modes (QNM) for a scalar field around a noncommutative Schwarzschild black hole. We verify the effect of noncommutativity on quasinormal frequencies by applying two procedures widely used in the literature. The first is the Wentzel-Kramers-Brillouin (WKB) approximation up to sixth order. In the second case we use the continuous fraction method developed by Leaver. Besides, we also show that due to noncommutativity, the shadow radius is reduced when we increase the noncommutative parameter. In addition, we find that the shadow radius is nonzero even at the zero mass limit for finite noncommutative parameter.

2.
Physica A ; 559: 125092, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32843818

RESUMEN

We here propose to model active and cumulative cases data from COVID-19 by a continuous effective model based on a modified diffusion equation under Lifshitz scaling with a dynamic diffusion coefficient. The proposed model is rich enough to capture different aspects of a complex virus diffusion as humanity has been recently facing. The model being continuous it is bound to be solved analytically and/or numerically. So, we investigate two possible models where the diffusion coefficient associated with possible types of contamination are captured by some specific profiles. The active cases curves here derived were able to successfully describe the pandemic behavior of Germany and Spain. Moreover, we also predict some scenarios for the evolution of COVID-19 in Brazil. Furthermore, we depicted the cumulative cases curves of COVID-19, reproducing the spreading of the pandemic between the cities of São Paulo and São José dos Campos, Brazil. The scenarios also unveil how the lockdown measures can flatten the contamination curves. We can find the best profile of the diffusion coefficient that better fit the real data of pandemic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA