Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35270871

RESUMEN

Landslide is a very common and destructive geo-hazard, and displacement monitoring of it is integral for risk assessment and engineering prevention. Given the shortcomings of current landslide displacement monitor technologies, a new three-dimensional underground displacement monitoring technology is proposed based on the double mutual inductance voltage contour method. The underground displacement measuring device mainly consists of an information processing unit and sensing array, connected by power and RS-485 communication lines. An underground displacement measurement model to convert the double mutual inductance voltages and the inter-axis angle into the relative displacement between adjacent sensing units is established based on the interval-interpolation and contour-modeling. Under the control of the information processing unit, the relative displacement between any two adjacent sensing units can be calculated through the underground displacement measurement model, so as to obtain the total displacement from underground depth to surface, and the measurement data can be further sent to the Internet of things cloud platform through the 4G module; thus the remote real-time monitoring of underground displacement three-dimensional measurement for the rock and soil mass from underground depth to the surface is realized. The measurement model is verified by building an experimental platform to simulate the underground displacement of rock and soil mass. The experimental results show that for each measuring unit, when the horizontal displacement and vertical displacement are within the measurement range of 0-50 mm, the maximum measurement error will not exceed 1 mm, which can meet the accuracy requirements of underground displacement monitoring of landslide.

2.
Sensors (Basel) ; 20(6)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197396

RESUMEN

Deep displacement monitoring of rock and soil mass is the focus of current geological hazard research. In the previous works, we proposed a geophysical deep displacement characteristic information detection method by implanting magneto-electric sensing arrays in boreholes, and preliminarily designed the sensor prototype and algorithm of deep displacement three-dimensional (3D) measurement. On this basis, we optimized the structure of the sensing unit through 3D printing and other technologies, and improved the shape and material parameters of the permanent magnet after extensive experiments. Through in-depth analysis of the experimental data, based on the data query algorithm and the polynomial least square curve fitting theory, a new mathematical model for 3D measurement of deep displacement has been proposed. By virtue of it, the output values of mutual inductance voltage, Hall voltage and tilt measuring voltage measured by the sensing units can be converted into the variations of relative horizontal displacement, vertical displacement and axial tilt angle between any two adjacent sensing units in real time, and the measuring errors of horizontal and vertical displacement are tested to be 0-1.5 mm. The combination of structural optimization and measurement method upgrading extends the measurement range of the sensing unit from 0-30 mm to 0-50 mm. It shows that our revised deep displacement 3D measuring sensor can better meet the needs of high-precision monitoring at the initial stage of rock and soil deformation and large deformation monitoring at the rapid change and imminent-sliding stage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA