Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Hazard Mater ; 479: 135544, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39216245

RESUMEN

Accurate airborne virus monitoring is important for preventing the spread of infectious diseases. Although standard reverse transcription-quantitative polymerase chain reaction (RT-qPCR) can efficiently detect viral ribonucleic acid (RNA), it cannot determine whether the RNA is associated with active (infectious) or inactive (non-infectious) viruses. Plaque assay is the gold standard for determining viral infectivity but is laborious and time-consuming. This study explored the viral infectivity of H1N1 influenza virus and human coronavirus (HCoV-229E) using capsid integrity RT-qPCR, where virus samples were pretreated with reagents penetrating viruses with damaged capsids, impeding amplification by binding to their RNA. Therefore, the amplified signals corresponded solely to active viruses with undamaged capsids. Propidium monoazide (PMA) and platinum (IV) chloride (PtCl4) were used to investigate the effects of reagent concentration. Feasibility tests revealed that PtCl4 was more efficient than PMA, with optimal concentrations of 125-250 µM and 250-500 µM for H1N1 influenza virus and HCoV-229E, respectively. The results of percentage of active virus showed that capsid integrity RT-qPCR provided a trend similar to that of plaque assay, indicating an accurate measure of viral infectivity. Virus sampling in the laboratory and field highlighted the precision of this methodology for determining viral infectivity. Therefore, this methodology enables rapid and accurate detection of infectious airborne H1N1 influenza virus and HCoV-229E, allowing swift response to outbreaks.

2.
J Breath Res ; 18(4)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38968933

RESUMEN

Although the associations between a patient's body mass index (BMI) and metabolic diseases, as well as their breath test results, have been studied, the relationship between breath hydrogen/methane levels and metabolic diseases needs to be further clarified. We aimed to investigate how the composition of exhaled breath gases relates to metabolic disorders, such as diabetes mellitus, dyslipidemia, hypertension, and nonalcoholic fatty liver disease (NAFLD), and their key risk factors. An analysis was performed using the medical records, including the lactulose breath test (LBT) data of patients who visited the Ajou University Medical Center, Suwon, Republic of Korea, between January 2016 and December 2021. The patients were grouped according to four different criteria for LBT hydrogen and methane levels. Of 441 patients, 325 (72.1%) had positive results for methane only (hydrogen < 20 parts per million [ppm] and methane ⩾ 3 ppm). BMIs and NAFLD prevalence were higher in patients with only methane positivity than in patients with hydrogen and methane positivity (hydrogen ⩾ 20 ppm and methane ⩾ 3 ppm). According to a multivariate analysis, the odds ratio of only methane positivity was 2.002 (95% confidence interval [CI]: 1.244-3.221,P= 0.004) for NAFLD. Our results demonstrate that breath methane positivity is related to NAFLD and suggest that increased methane gas on the breath tests has the potential to be an easily measurable biomarker for NAFLD diagnosis.


Asunto(s)
Pruebas Respiratorias , Metano , Enfermedad del Hígado Graso no Alcohólico , Humanos , Pruebas Respiratorias/métodos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Metano/análisis , Femenino , Masculino , Persona de Mediana Edad , República de Corea/epidemiología , Adulto , Índice de Masa Corporal , Hidrógeno/análisis , Anciano , Factores de Riesgo , Espiración
3.
J Hazard Mater ; 412: 125219, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33516114

RESUMEN

Capturing virus aerosols in a small volume of liquid is essential when monitoring airborne viruses. As such, aerosol-to-hydrosol enrichment is required to produce a detectable viral sample for real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. To meet this requirement, the efficient and non-destructive collection of airborne virus particles is needed, while the incoming air flow rate should be sufficiently high to quickly collect a large number of virus particles. To achieve this, we introduced a high air flow-rate electrostatic sampler (HAFES) that collected virus aerosols (human coronavirus 229E, influenza A virus subtypes H1N1 and H3N2, and bacteriophage MS2) in a continuously flowing liquid. Viral collection efficiency was evaluated using aerosol particle counts, while viral recovery rates were assessed using real-time qRT-PCR and plaque assays. An air sampling period of 20 min was sufficient to produce a sample suitable for use in real-time qRT-PCR in a viral epidemic scenario.


Asunto(s)
Coronavirus , Subtipo H1N1 del Virus de la Influenza A , Aerosoles , Microbiología del Aire , Coronavirus/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A , Electricidad Estática
4.
Biosens Bioelectron ; 170: 112656, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33010706

RESUMEN

Point-of-care risk assessment (PCRA) for airborne viruses requires a system that can enrich low-concentration airborne viruses dispersed in field environments into a small volume of liquid. In this study, airborne virus particles were collected to a degree above the limit of detection (LOD) for a real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). This study employed an electrostatic air sampler to capture aerosolized test viruses (human coronavirus 229E (HCoV-229E), influenza A virus subtype H1N1 (A/H1N1), and influenza A virus subtype H3N2 (A/H3N2)) in a continuously flowing liquid (aerosol-to-hydrosol (ATH) enrichment) and a concanavalin A (ConA)-coated magnetic particles (CMPs)-installed fluidic channel for simultaneous hydrosol-to-hydrosol (HTH) enrichment. The air sampler's ATH enrichment capacity (EC) was evaluated using the aerosol counting method. In contrast, the HTH EC for the ATH-collected sample was evaluated using transmission-electron-microscopy (TEM)-based image analysis and real-time qRT-PCR assay. For example, the ATH EC for HCoV-229E was up to 67,000, resulting in a viral concentration of 0.08 PFU/mL (in a liquid sample) for a viral epidemic scenario of 1.2 PFU/m3 (in air). The real-time qRT-PCR assay result for this liquid sample was "non-detectable" however, subsequent HTH enrichment for 10 min caused the "non-detectable" sample to become "detectable" (cycle threshold (CT) value of 33.8 ± 0.06).


Asunto(s)
Técnicas Biosensibles/instrumentación , Coronavirus Humano 229E/aislamiento & purificación , Infecciones por Coronavirus/virología , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/virología , Aerosoles/análisis , Microbiología del Aire , Técnicas Biosensibles/economía , Coronavirus Humano 229E/genética , Monitoreo del Ambiente/economía , Monitoreo del Ambiente/instrumentación , Diseño de Equipo , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/instrumentación , Factores de Tiempo
5.
ACS Sens ; 5(9): 2763-2771, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32493010

RESUMEN

Rapid monitoring of biological particulate matter (Bio-PM, bioaerosols) requires an enrichment technique for concentrating the Bio-PM dispersed in the air into a small volume of liquid. In this study, an electrostatic air sampler is employed to capture aerosolized test bacteria in a carrier liquid (aerosol-to-hydrosol (ATH) enrichment). Simultaneously, the captured bacteria are carried into a fluid channel for hydrosol-to-hydrosol (HTH) enrichment with Concanavalin A coated magnetic particles (CMPs). The ATH enrichment capacity of the air sampler was evaluated with an aerosol particle counter for the following test bacteria: Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Acinetobacter baumannii. Then, the HTH enrichment capacity for the ATH-collected sample was evaluated using the colony-counting method, scanning electron microscopy based image analysis, fluorescence microscopy, electrical current measurements, and real-time quantitative polymerase chain reaction (qPCR). The ATH and HTH enrichment capacities for the given operation conditions were up to 80 000 and 14.9, respectively, resulting in a total enrichment capacity of up to 1.192 × 106. Given that air-to-liquid enrichment required to prepare detectable bacterial samples for real-time qPCR in field environments is of the order of at least 106, our method can be used to prepare a detectable sample from low-concentration airborne bacteria in the field and significantly reduce the time required for Bio-PM monitoring because of its enrichment capacity.


Asunto(s)
Microbiología del Aire , Monitoreo del Ambiente , Aerosoles , Bacterias , Material Particulado/análisis
6.
J Hazard Mater ; 396: 122640, 2020 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-32339873

RESUMEN

Recently, various studies have reported the prevention and treatment of respiratory infection outbreaks caused by lethal viruses. Consequently, a variety of air filters coated with antimicrobial agents have been developed to capture and inactivate virus particles in continuous airflow conditions. However, since aerosolized infectious viral-testing is inadvisable due to safety concerns, their anti-viral capability has only been tested by inserting the filters into liquid media, where infectious virus particles disperse. In this study a novel method of determining anti-viral performance of an air filter against airborne infectious viruses is presented. Initially, anti-viral air filter tests were conducted. Firstly, by an air-media test, in which the air filter was placed against an aerosolized non-infectious virus. Secondly, by a liquid-media test, in which the filter was inserted into a liquid medium containing a non-infectious virus. Subsequently, a correlation was established by comparing the susceptibility constants obtained between the two medium tests and an association was found for the air medium test with infectious virus. After ensuring the relationship did not depend on the virus species, the correlation was used to derive the results of the air-medium test from the results of the liquid-medium test.


Asunto(s)
Filtros de Aire , Antiinfecciosos , Virus , Microbiología del Aire , Antivirales , Filtración
7.
J Hazard Mater ; 369: 684-690, 2019 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-30826561

RESUMEN

Simultaneous improvement in detection speed and reliability is critical for bioaerosol monitoring. Recent rapid detection strategies exhibit difficulties with misinterpretation due to signal interference from co-existing nonbiological particles, whereas biomolecular and bioluminescent approaches require long process times (>several tens of minutes) to generate readable values despite their better detection reliability. To overcome these shortcomings, we designed a system to achieve rapid reliable field detection of bioaerosols (>104 relative luminescence units [RLU] per cubic meter of air) in <3 min processing time (equivalent to 24 L sampling air volume) by employing a lysis droplet supply for efficient extraction of adenosine triphosphate (ATP) from particulate matter (PM) and a photomultiplier tube detector for signal amplification of ATP bioluminescence. We also suggested the use of the ratio of RLU (m-3) to total PM (µg m-3), or specific bioluminescence (RLU µg-1), as a measure of the biofraction of PM (i.e., potential biohazards). A correlation between RLU and colony forming unit was also obtained from simultaneous aerosol sampling using an agar-inserted sampler.


Asunto(s)
Adenosina Trifosfato/análisis , Polvo/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Aerosoles , Microbiología del Aire , Ensayo de Unidades Formadoras de Colonias , Sistemas de Computación , Tamaño de la Partícula , Reproducibilidad de los Resultados , Staphylococcus aureus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA