Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Talanta ; 279: 126604, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39068827

RESUMEN

Cancer, a life-threatening genetic disease caused by abnormalities in normal cell growth regulatory functions, poses a significant challenge that current medical technologies cannot fully overcome. The current desired breakthrough is to diagnose cancer as early as possible and increase survival rates through treatments tailored to the prognosis and appropriate follow-up. From a perspective that reflects this contemporary paradigm of cancer diagnostics, exosomes are emerging as promising biomarkers. Exosomes, serving as mobile biological information repositories of cancer cells, have been known to create a microtumor environment in surrounding cells, and significant insight into the clinical significance of cancer diagnosis targeting them has been reported. Therefore, there are growing interests in constructing a system that enables continuous screening with a focus on patient-friendly and flexible diagnosis, aiming to improve cancer screening rates through exosome detection. This review focuses on a proposed exosome-embedded biological information-detecting platform employing a field-effect transistor (FET)-based biosensor that leverages portability, cost-effectiveness, and rapidity to minimize the stages of sacrifice attributable to cancer. The FET-applied biosensing technique, stemming from variations in an electric field, is considered an early detection system, offering high sensitivity and a prompt response frequency for the qualitative and quantitative analysis of biomolecules. Hence, an in-depth discussion was conducted on the understanding of various exosome-based cancer biomarkers and the clinical significance of recent studies on FET-based biosensors applying them.


Asunto(s)
Técnicas Biosensibles , Exosomas , Nanoestructuras , Neoplasias , Transistores Electrónicos , Exosomas/metabolismo , Exosomas/química , Humanos , Técnicas Biosensibles/métodos , Neoplasias/diagnóstico , Nanoestructuras/química , Biomarcadores de Tumor/análisis
2.
ACS Sens ; 8(8): 3174-3186, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37585601

RESUMEN

Cancer progresses silently to the terminal stage of the impossible operable condition. There are many limitations in the treatment options of cancer, but diagnosis in an early stage can improve survival rates and low recurrence. Exosomes are the biomolecules released from cancer cells and are promising candidates for clinical diagnosis. Among them, the cluster of differentiation 9 (CD9) protein is an important exosomal biomarker that can be used for exosome determination. Therefore, here, a CD9 aptamer was first synthesized and applied to an extended-gate field-effect transistor (EGFET)-type biosensor containing a disposable sensing membrane to suggest the possibility of detecting exosomes in a clinical environment. Systematically evaluating ligands using the exponential enrichment (SELEX) technique was performed to select nucleic acid sequences that can specifically target the CD9 protein. Exosomes were detected according to the electrical signal changes on a membrane, which is an extended gate using an Au microelectrode. The fabricated biosensor showed a limit of detection (LOD) of 10.64 pM for CD9 proteins, and the detection range was determined from 10 pM to 1 µM in the buffer. In the case of the clinical test, the LOD and detection ranges of exosomes in human serum samples were 6.41 × 102 exosomes/mL and 1 × 103 to 1 × 107 exosomes/mL, respectively, showing highly reliable results with low error rates. These findings suggest that the proposed aptasensor can be a powerful tool for a simple and early diagnosis of exosomes.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Exosomas , Humanos , Exosomas/metabolismo , Técnicas Biosensibles/métodos , Límite de Detección , Aptámeros de Nucleótidos/metabolismo , Tetraspanina 29/metabolismo
3.
Bioelectrochemistry ; 154: 108540, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37556929

RESUMEN

West Nile virus (WNV) is a mosquito-borne flavivirus that can cause West Nile fever, meningitis, encephalitis, and polio. Early detection of WNV is important to prevent infection spread on the field. To commercialize the electrochemical biosensor for WNV, rapid target detection with the cheap manufacture cost is essential. Here, we developed a fast-response electrochemical biosensor consisting of a truncated WNV aptamer/MXene (Ti3C2Tx) bilayer on round-type micro gap. To reduce the target binding time, the application of the alternating current electrothermal flow (ACEF) technology reduced the target detection time to within 10 min, providing a rapid biosensor platform. The MXene nanosheet improved electrochemical signal amplification, and the aptamer produced through systematic evolution of ligands by exponential enrichment process eliminated unnecessary base sequences via truncation and lowered the manufacturing cost. Under optimized conditions, the WNV limit of detection (LOD) and selectivity were measured using electrochemical measurement methods, including cyclic voltammetry and square wave voltammetry. The LOD was 2.57 pM for WNV diluted in deionized water and 1.06 pM for WNV diluted in 10% human serum. The fabricated electrochemical biosensor has high selectivity and allows rapid detection, suggesting the possibility of future application in the diagnosis of flaviviridae virus.


Asunto(s)
Culicidae , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Humanos , Fiebre del Nilo Occidental/diagnóstico
4.
Biosens Bioelectron ; 237: 115474, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364302

RESUMEN

Microcystis aeruginosa (M. aeruginosa) cause the eutrophication of lakes and rivers. To effectively control the overgrowth of M. aeruginosa, a suitable measurement method should be required in the aquatic fields. To address this, we developed a field-ready cyanobacterial pretreatment device and an electrochemical clustered regularly interspaced short palindromic repeats (EC-CRISPR) biosensor. The cyanobacterial pretreatment device consists of a syringe, glass bead, and graphene oxide (GO) bead. Then, the M. aeruginosa dissolved in the freshwater sample was added to fabricated filter. After filtration, the purified gene was loaded onto a CRISPR-based electrochemical biosensor chip to detect M. aeruginosa gene fragments. The biosensor was composed of CRISPR/Cpf1 protein conjugated with MXene on an Au microgap electrode (AuMGE) integrated into a printed circuit board (PCB). This AuMGE/PCB system maximizes the signal-to-noise ratio, which controls the working and counter electrode areas requiring only 3 µL samples to obtain high reliability. Using the extracted M. aeruginosa gene with a pre-treatment filter, the CRISPR biosensor showed a limit of detection of 0.089 pg/µl in fresh water. Moreover, selectivity test and matrix condition test carried out using the EC-CRISPR biosensor. These handheld pre-treatment kit and biosensors can enable field-ready detection of CyanoHABs.

5.
Pharmaceutics ; 15(3)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36986633

RESUMEN

Numerous drugs have emerged to treat various diseases, such as COVID-19, cancer, and protect human health. Approximately 40% of them are lipophilic and are used for treating diseases through various delivery routes, including skin absorption, oral administration, and injection. However, as lipophilic drugs have a low solubility in the human body, drug delivery systems (DDSs) are being actively developed to increase drug bioavailability. Liposomes, micro-sponges, and polymer-based nanoparticles have been proposed as DDS carriers for lipophilic drugs. However, their instability, cytotoxicity, and lack of targeting ability limit their commercialization. Lipid nanoparticles (LNPs) have fewer side effects, excellent biocompatibility, and high physical stability. LNPs are considered efficient vehicles of lipophilic drugs owing to their lipid-based internal structure. In addition, recent LNP studies suggest that the bioavailability of LNP can be increased through surface modifications, such as PEGylation, chitosan, and surfactant protein coating. Thus, their combinations have an abundant utilization potential in the fields of DDSs for carrying lipophilic drugs. In this review, the functions and efficiencies of various types of LNPs and surface modifications developed to optimize lipophilic drug delivery are discussed.

6.
Biosens Bioelectron ; 207: 114159, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35290881

RESUMEN

Rapid detection methods for cytokine storm markers, such as tumor necrosis factor α (TNF-α) and interferon gamma (IFN-γ), are required. Herein, we describe the fabrication of a rapid electrochemical dual-target biosensor composed of aptamer/MXene (Ti3C2) nanosheet on an Au microgap electrode. Alternating current electrothermal flow (ACEF) significantly reduced the detection time (<10 min) to achieve the rapid biosensor construction. Additionally, MXene nanosheet was synthesized to improve the detection sensitivity. A dual-type Au microgap electrode was designed to measure TNF-α and IFN-γ levels using a single biosensor. Moreover, it performs 12 measurements using a small sample volume. To reduce detection time with stable aptamer-target complex formation, various ACEF conditions were evaluated and optimized to 10 min. Using the optimal conditions, the limit of detection (LOD) and selectivity were determined by electrochemical impedance spectroscopy (EIS). A linear region was observed in the concentration range of 1 pg/mL to 10 ng/mL of TNF-α and IFN-γ. The LOD of TNF-α and IFN-γ were 0.15 pg/mL and 0.12 pg/mL within 10 min, respectively. Furthermore, the proposed biosensor detected TNF-α and IFN-γ diluted in 10% human serum in the concentration range of 1 pg/mL to 10 ng/mL with LODs of 0.25 pg/mL and 0.26 pg/mL, respectively.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Citocinas , Técnicas Electroquímicas/métodos , Electrodos , Oro/química , Humanos , Interferón gamma , Límite de Detección , Oligonucleótidos , Factor de Necrosis Tumoral alfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA