Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-31547196

RESUMEN

Chicken litter application on land as an organic fertilizer is the cheapest and most environmentally safe method of disposing of the volume generated from the rapidly expanding poultry industry worldwide. However, little is known about the safety of chicken litter for land application and general release into the environment. Bridging this knowledge gap is crucial for maximizing the benefits of chicken litter as an organic fertilizer and mitigating negative impacts on human and environmental health. The key safety concerns of chicken litter are its contamination with pathogens, including bacteria, fungi, helminthes, parasitic protozoa, and viruses; antibiotics and antibiotic-resistant genes; growth hormones such as egg and meat boosters; heavy metals; and pesticides. Despite the paucity of literature about chicken litter safety for land application, the existing information was scattered and disjointed in various sources, thus making them not easily accessible and difficult to interpret. We consolidated scattered pieces of information about known contaminants found in chicken litter that are of potential risk to human, animal, and environmental health and how they are spread. This review tested the hypothesis that in its current form, chicken litter does not meet the minimum standards for application as organic fertilizer. The review entails a meta-analysis of technical reports, conference proceedings, peer-reviewed journal articles, and internet texts. Our findings indicate that direct land application of chicken litter could be harming animal, human, and environmental health. For example, counts of pathogenic strains of Eschericiacoli (105-1010 CFU g-1) and Coliform bacteria (106-108 CFU g-1) exceeded the maximum permissible limits (MPLs) for land application. In Australia, 100% of broiler litter tested was contaminated with Actinobacillus and re-used broiler litter was more contaminated with Salmonella than non-re-used broiler litter. Similarly, in the US, all (100%) broiler litter was contaminated with Eschericiacoli containing genes resistant to over seven antibiotics, particularly amoxicillin, ceftiofur, tetracycline, and sulfonamide. Chicken litter is also contaminated with a vast array of antibiotics and heavy metals. There are no standards set specifically for chicken litter for most of its known contaminants. Even where standards exist for related products such as compost, there is wide variation across countries and bodies mandated to set standards for safe disposal of organic wastes. More rigorous studies are needed to ascertain the level of contamination in chicken litter from both broilers and layers, especially in developing countries where there is hardly any data; set standards for all the contaminants; and standardize these standards across all agencies, for safe disposal of chicken litter on land.


Asunto(s)
Fertilizantes/microbiología , Estiércol/microbiología , Animales , Antibacterianos , Bacterias , Pollos , Farmacorresistencia Microbiana/genética , Fertilizantes/toxicidad , Hongos , Genes Bacterianos , Humanos , Metales Pesados , Aves de Corral , Virus
2.
Int Sch Res Notices ; 2014: 258497, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-27355005

RESUMEN

This study was conducted to determine the abundance and symbiotic efficiency of native rhizobia nodulating common bean in Kisumu and Kakamega, Kenya. Soil sampling was carried out in three farms that had been used for growing common bean for at least two seasons and one fallow land with no known history of growing common bean or inoculation. Abundance of soil rhizobia and symbiotic efficiency (SE) were determined in a greenhouse experiment. Native rhizobia populations ranged from 3.2 × 10(1) to 3.5 × 10(4) cells per gram of soil. Pure bacterial cultures isolated from fresh and healthy root nodules exhibited typical characteristics of Rhizobium sp. on yeast extract mannitol agar media supplemented with Congo red. Bean inoculation with the isolates significantly (p < 0.05) increased the shoot dry weight and nitrogen (N) concentration and content. The SE of all the native rhizobia were higher when compared to a reference strain, CIAT 899 (67%), and ranged from 74% to 170%. Four isolates had SE above a second reference strain, Strain 446 (110%). Our results demonstrate the presence of native rhizobia that are potentially superior to the commercial inoculants. These can be exploited to enhance bean inoculation programmes in the region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA