Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 63(12): 1994-2007, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36001044

RESUMEN

The development of the male gametophyte is a tightly regulated process that requires the precise control of cell division and gene expression. A relevant aspect to understand the events underlying pollen development regulation constitutes the identification and characterization of the genes required for this process. In this work, we showed that the DC1 domain protein BINUCLEATE POLLEN (BNP) is essential for pollen development and germination. Pollen grains carrying a defective BNP alleles failed to complete mitosis II and exhibited impaired pollen germination. By yeast two-hybrid analysis and bimolecular fluorescence complementation assays, we identified a set of BNP-interacting proteins. Among confirmed interactors, we found the NAC family transcriptional regulators Vascular Plant One-Zinc Finger 1 (VOZ1) and VOZ2. VOZ1 localization changes during pollen development, moving to the vegetative nucleus at the tricellular stage. We observed that this relocalization requires BNP; in the absence of BNP in pollen from bnp/BNP plants, VOZ1 nuclear localization is impaired. As the voz1voz2 double mutants showed the same developmental defect observed in bnp pollen grains, we propose that BNP requirement to complete microgametogenesis could be linked to its interaction with VOZ1/2 proteins. BNP could have the role of a scaffold protein, recruiting VOZ1/2 to the endosomal system into assemblies that are required for their further translocation to the nucleus, where they act as transcriptional regulators.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Polen , Mitosis , Regulación de la Expresión Génica de las Plantas , Mutación/genética
2.
Invest New Drugs ; 40(1): 30-41, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34478029

RESUMEN

Breast cancer is the leading cause of cancer death among women worldwide. For this reason, the development of new therapies is still essential. In this work we have analyzed the antitumor potential of levoglucosenone, a chiral building block derived from the pyrolysis of cellulose-containing materials such as soybean hulls, and three structurally related analogues. Employing human and murine mammary cancer models, we have evaluated the effect of our compounds on cell viability through MTS assay, apoptosis induction by acridine orange/ethidium bromide staining and/or flow cytometry and the loss of mitochondrial potential by tetramethylrhodamine methyl ester staining. Autophagy and senescence induction were also evaluated by Western blot and ß-galactosidase activity respectively. Secreted metalloproteases activity was determined by quantitative zymography. Migratory capacity was assessed by wound healing assays while invasive potential was analyzed using Matrigel-coated transwell chambers. In vivo studies were also performed to evaluate subcutaneous tumor growth and experimental lung colonization. All compounds impaired in vitro proliferation with IC50 values in a range of low micromolar. Apoptosis was identified as the main mechanism responsible for the reduction of monolayer cell content induced by the compounds without detecting modulations of autophagy or senescence processes. Two of the four compounds (levoglucosenone and its brominated variant) were able to modulate in vitro events associated with tumor progression, such as migratory potential, invasiveness, and proteases secretion. Furthermore, tumor volume and metastatic spread were significantly reduced in vivo after the treatment these two compounds. Here, we could obtain from soybean hulls, a material with almost no commercial value, a variety of chemical compounds useful for breast cancer treatment.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/patología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Glucosa/análogos & derivados , Animales , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Celulosa/química , Relación Dosis-Respuesta a Droga , Glucosa/química , Glucosa/farmacología , Humanos , Concentración 50 Inhibidora , Ratones , Ratones Endogámicos BALB C , Carga Tumoral/efectos de los fármacos
4.
Sci Rep ; 11(1): 6044, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33723318

RESUMEN

Breast cancer is the leading cause of cancer death among women worldwide. Blocking a single signaling pathway is often an ineffective therapy, especially in the case of aggressive or drug-resistant tumors. Since we have previously described the mechanism involved in the crosstalk between Retinoic Acid system and protein kinase C (PKC) pathway, the rationale of our study was to evaluate the effect of combining all-trans-retinoic acid (ATRA) with a classical PCK inhibitor (Gö6976) in preclinical settings. Employing hormone-independent mammary cancer models, Gö6976 and ATRA combined treatment induced a synergistic reduction in proliferative potential that correlated with an increased apoptosis and RARs modulation towards an anti-oncogenic profile. Combined treatment also impairs growth, self-renewal and clonogenicity potential of cancer stem cells and reduced tumor growth, metastatic spread and cancer stem cells frequency in vivo. An in-silico analysis of "Kaplan-Meier plotter" database indicated that low PKCα together with high RARα mRNA expression is a favorable prognosis factor for hormone-independent breast cancer patients. Here we demonstrate that a classical PKC inhibitor potentiates ATRA antitumor effects also targeting cancer stem cells growth, self-renewal and frequency.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Mamarias Experimentales , Proteínas de Neoplasias , Células Madre Neoplásicas/enzimología , Proteína Quinasa C beta , Proteína Quinasa C-alfa , Animales , Línea Celular Tumoral , Femenino , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/enzimología , Ratones , Ratones Endogámicos BALB C , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Proteína Quinasa C beta/antagonistas & inhibidores , Proteína Quinasa C beta/metabolismo , Proteína Quinasa C-alfa/antagonistas & inhibidores , Proteína Quinasa C-alfa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Tretinoina/farmacología
5.
J Surg Res ; 249: 216-224, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32001387

RESUMEN

Pericardium closure after cardiac surgery is recommended to prevent postoperative adhesions to the sternum. Synthetic materials have been used as substitutes, with limited results because of impaired remodeling and fibrotic tissue formation. Urinary bladder matrix (UBM) scaffolds promote constructive remodeling that more closely resemble the native tissue. The aim of the study is to evaluate the host response to UBM scaffolds in a porcine model of partial pericardial resection. Twelve Landrace pigs were subjected to a median sternotomy. A 5 × 7 cm pericardial defect was created and then closed with a 5 × 7 cm multilayer UBM patch (UBM group) or left as an open defect (control group). Animals were survived for 8 wk. End points included gross morphology, biomechanical testing, histology with semiquantitative score, and cardiac function. The UBM group showed mild adhesions, whereas the control group showed fibrosis at the repair site, with robust adhesions and injury to the coronary bed. Load at failure (gr) and stiffness (gr/mm) were lower in the UBM group compared with the native pericardium (199.9 ± 59.2 versus 405.3 ± 99.89 g, P = 0.0536 and 44.23 ± 15.01 versus 146.5 ± 24.38 g/mm, P = 0.0025, respectively). In the UBM group, the histology resembled native pericardial tissue, with neovascularization, neofibroblasts, and little inflammatory signs. In contrast, control group showed fibrotic tissue with mononuclear infiltrates and a lack of organized collagen fibers validated with a histologic score. Both groups had normal ultrasonography results without cardiac motility disorders. In this setting, UBM scaffolds showed appropriate features for pericardial repair, restoring tissue properties that could help reduce postsurgical adhesions and prevent its associated complications.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/efectos adversos , Pericardio/cirugía , Complicaciones Posoperatorias/prevención & control , Adherencias Tisulares/prevención & control , Andamios del Tejido , Animales , Procedimientos Quirúrgicos Cardíacos/métodos , Modelos Animales de Enfermedad , Matriz Extracelular , Femenino , Humanos , Pericardio/patología , Complicaciones Posoperatorias/etiología , Mallas Quirúrgicas , Sus scrofa , Adherencias Tisulares/etiología , Adherencias Tisulares/patología , Vejiga Urinaria/citología
6.
J Surg Res ; 246: 62-72, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31561179

RESUMEN

Recurrence rates in the laparoscopic repair of the hiatal hernia range from 12% to 59%. Limitation of reinforcement has been principally the risk of adverse events caused by synthetic materials. Biologic and resorbable synthetic materials are valid alternatives. This study compares the host response to all these materials after hiatal hernia repair. A total of 20 Landrace pigs, underwent laparoscopic primary hiatal hernia repair and reinforced with a polypropylene mesh (PROLENE: polypropylene [PP]), an absorbable synthetic scaffold (GOREBIO-A: polyglycolic acid [PGA]), a urinary bladder matrix scaffold, (Gentrix: urinary bladder matrix [UBM]), or without reinforcement, control group (C). Animals were survived for 3 months. Endpoints included gross morphology, biomechanical testing, and histology. Pigs in PP and PGA groups showed fibrosis at the repair site, with robust adhesions. In UBM and C groups, only mild adhesions were found. Load at failure (gr) and stiffness (gr/mm) of PP were higher than C group (PP:2103 ± 548.3 versus C:951.1 ± 372.7, P = 0.02; PP:643.3 ± 301 versus C:152.6 ± 142.7, P = 0.01). PGA and UBM values for both parameters were in between PP and C samples. However, stiffness in UBM was tended to be lower than PP group, and approached a significant difference (643.3 ± 301 versus 243 ± 122.1, P = 0.0536). In UBM group, the histology resembled native tissue. By contrast, PP and PGA groups showed mononuclear infiltrates, fibroencapsulation, necrosis, remnants of mesh, and disorganized tissue that was validated with a histologic score. In this setting, UBM scaffolds showed the most appropriate features for hiatal hernia repair, recovering the tissue properties that can help reduce the possibility of early failure and prevent complications associated with the implanted material.


Asunto(s)
Materiales Biocompatibles , Hernia Hiatal/cirugía , Herniorrafia/instrumentación , Prevención Secundaria/instrumentación , Andamios del Tejido , Implantes Absorbibles , Animales , Modelos Animales de Enfermedad , Femenino , Herniorrafia/métodos , Humanos , Ensayo de Materiales , Prevención Secundaria/métodos , Estrés Mecánico , Mallas Quirúrgicas , Sus scrofa
7.
PLoS One ; 13(12): e0208520, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30596662

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a human pathogen responsible for diarrhea, hemorrhagic colitis and hemolytic uremic syndrome (HUS). To promote a comprehensive insight into the molecular basis of EHEC O157:H7 physiology and pathogenesis, the combined proteome of EHEC O157:H7 strains, Clade 8 and Clade 6 isolated from cattle in Argentina, and the standard EDL933 (clade 3) strain has been analyzed. From shotgun proteomic analysis a total of 2,644 non-redundant proteins of EHEC O157:H7 were identified, which correspond approximately 47% of the predicted proteome of this pathogen. Normalized spectrum abundance factor analysis was performed to estimate the protein abundance. According this analysis, 50 proteins were detected as the most abundant of EHEC O157:H7 proteome. COG analysis showed that the majority of the most abundant proteins are associated with translation processes. A KEGG enrichment analysis revealed that Glycolysis / Gluconeogenesis was the most significant pathway. On the other hand, the less abundant detected proteins are those related to DNA processes, cell respiration and prophage. Among the proteins that composed the Type III Secretion System, the most abundant protein was EspA. Altogether, the results show a subset of important proteins that contribute to physiology and pathogenicity of EHEC O157:H7.


Asunto(s)
Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/análisis , Proteómica , Animales , Bovinos , Cromatografía Líquida de Alta Presión , Escherichia coli O157/clasificación , Escherichia coli O157/aislamiento & purificación , Humanos , Redes y Vías Metabólicas/genética , Proteoma/análisis , Espectrometría de Masas en Tándem
8.
PLoS One ; 11(11): e0166883, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27880834

RESUMEN

Escherichia coli O157:H7 is responsible for severe diarrhea and hemolytic uremic syndrome (HUS), and predominantly affects children under 5 years. The major virulence traits are Shiga toxins, necessary to develop HUS and the Type III Secretion System (T3SS) through which bacteria translocate effector proteins directly into the host cell. By SNPs typing, E. coli O157:H7 was separated into nine different clades. Clade 8 and clade 6 strains were more frequently associated with severe disease and HUS. In this study, we aimed to identify differentially expressed proteins in two strains of E. coli O157:H7 (clade 8 and clade 6), obtained from cattle and compared them with the well characterized reference EDL933 strain (clade 3). Clade 8 and clade 6 strains show enhanced pathogenicity in a mouse model and virulence-related properties. Proteins were extracted and analyzed using the TMT-6plex labeling strategy associated with two dimensional liquid chromatography and mass spectrometry in tandem. We detected 2241 proteins in the cell extract and 1787 proteins in the culture supernatants. Attention was focused on the proteins related to virulence, overexpressed in clade 6 and 8 strains compared to EDL933 strain. The proteins relevant overexpressed in clade 8 strain were the curli protein CsgC, a transcriptional activator (PchE), phage proteins, Stx2, FlgM and FlgD, a dienelactone hydrolase, CheW and CheY, and the SPATE protease EspP. For clade 6 strain, a high overexpression of phage proteins was detected, mostly from Stx2 encoding phage, including Stx2, flagellin and the protease TagA, EDL933_p0016, dienelactone hydrolase, and Haemolysin A, amongst others with unknown function. Some of these proteins were analyzed by RT-qPCR to corroborate the proteomic data. Clade 6 and clade 8 strains showed enhanced transcription of 10 out of 12 genes compared to EDL933. These results may provide new insights in E. coli O157:H7 mechanisms of pathogenesis.


Asunto(s)
Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/metabolismo , Virulencia , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bovinos , Enfermedades de los Bovinos/microbiología , Cromatografía Líquida de Alta Presión , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/genética , Escherichia coli O157/aislamiento & purificación , Proteínas de Escherichia coli/análisis , Proteínas de Escherichia coli/genética , Ratones , Polimorfismo de Nucleótido Simple , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Espectrometría de Masas en Tándem
9.
Genome Announc ; 3(3)2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26067964

RESUMEN

Escherichia coli O157:H7 is a major etiologic agent of diseases in humans that cause diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome. Here, we report the draft genome sequences of two strains isolated from cattle that had high levels of Shiga toxin 2 and high lethality in mice.

10.
PLoS One ; 10(6): e0127710, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26030198

RESUMEN

The hemolytic uremic syndrome (HUS) whose main causative agent is enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a disease that mainly affects children under 5 years of age. Argentina is the country with the highest incidence of HUS in the world. Cattle are a major reservoir and source of infection with E. coli O157:H7. To date, the epidemiological factors that contribute to its prevalence are poorly understood. Single nucleotide polymorphism (SNP) typing has helped to define nine E. coli O157:H7 clades and the clade 8 strains were associated with most of the cases of severe disease. In this study, eight randomly selected isolates of EHEC O157:H7 from cattle in Argentina were studied as well as two human isolates. Four of them were classified as clade 8 through the screening for 23 SNPs; the two human isolates grouped in this clade as well, while two strains were closely related to strains representing clade 6. To assess the pathogenicity of these strains, we assayed correlates of virulence. Shiga toxin production was determined by an ELISA kit. Four strains were high producers and one of these strains that belonged to a novel genotype showed high verocytotoxic activity in cultured cells. Also, these clade 8 and 6 strains showed high RBC lysis and adherence to epithelial cells. One of the clade 6 strains showed stronger inhibition of normal water absorption than E. coli O157:H7 EDL933 in human colonic explants. In addition, two of the strains showing high levels of Stx2 production and RBC lysis activity were associated with lethality and uremia in a mouse model. Consequently, circulation of such strains in cattle may partially contribute to the high incidence of HUS in Argentina.


Asunto(s)
Escherichia coli O157/patogenicidad , Filogenia , Animales , Argentina/epidemiología , Adhesión Bacteriana , Sistemas de Secreción Bacterianos , Técnicas de Tipificación Bacteriana , Bovinos , Línea Celular , Colon/microbiología , Modelos Animales de Enfermedad , Células Epiteliales/microbiología , Células Epiteliales/patología , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Escherichia coli O157/clasificación , Escherichia coli O157/genética , Escherichia coli O157/aislamiento & purificación , Geografía , Hemólisis , Humanos , Ratones Endogámicos BALB C , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Toxina Shiga , Virulencia
11.
Int J Med Microbiol ; 305(3): 348-54, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25794836

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) strains are responsible for a variety of clinical syndromes including bloody and non-bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Although multiple serotypes of STEC have been isolated from hemorrhagic colitis cases, E. coli O157:H7 is by far the most prevalent serotype associated with HUS. Shiga toxin is the major virulence factor of E. coli O157:H7 and is responsible for the more severe symptoms of the infection. However, the mechanisms involved in the pathogenesis of diarrhea mediated by Stx2 are not well known. In this study, we have determined the effects of E. coli O157:H7 strain 125/99 wild type (wt) on the human colonic mucosa mounted in an Ussing chamber. In response to 125/99wt, an inhibition of water absorption across human colonic mucosa was observed. Histological sections showed severe necrosis with detachment of the surface epithelium, mononuclear inflammatory infiltrate and loss of goblet cells after 1h of incubation with 125/99wt. These alterations were not observed with the isogenic mutant strain lacking stx2 or with the filter-sterilized culture supernatant from the 125/99wt strain. These results indicate that the cell damages in human colon are induced by Stx2, and that Stx2 production is increased by the interaction with bacterial cells. Identification of host cell-derived factors responsible for increasing Stx2 can lead to new strategies for modulating STEC infections.


Asunto(s)
Colon/patología , Colon/fisiopatología , Escherichia coli O157/patogenicidad , Mucosa Intestinal/patología , Mucosa Intestinal/fisiopatología , Toxina Shiga II/toxicidad , Adulto , Colon/efectos de los fármacos , Histocitoquímica , Humanos , Mucosa Intestinal/efectos de los fármacos , Modelos Teóricos , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA