Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurochem ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063257

RESUMEN

Glutamate recycling between neurons and astrocytes is essential to maintain neurotransmitter homeostasis. Disturbances in glutamate homeostasis, resulting in excitotoxicity and neuronal death, have been described as a potential mechanism in Alzheimer's disease (AD) pathophysiology. However, glutamate neurotransmitter metabolism in different human brain cells, particularly astrocytes, has been poorly investigated at the early stages of AD. We sought to investigate glucose and glutamate metabolism in AD by employing human induced pluripotent stem cell (hiPSC)-derived astrocytes and neurons carrying mutations in the amyloid precursor protein (APP) or presenilin-1 (PSEN-1) gene as found in familial types of AD (fAD). Methods such as live-cell bioenergetics and metabolic mapping using [13 C]-enriched substrates were used to examine metabolism in the early stages of AD. Our results revealed greater glycolysis and glucose oxidative metabolism in astrocytes and neurons with APP or PSEN-1 mutations, accompanied by an elevated glutamate synthesis compared to control WT cells. Astrocytes with APP or PSEN-1 mutations exhibited reduced expression of the excitatory amino acid transporter 2 (EAAT2), and glutamine uptake increased in mutated neurons, with enhanced glutamate release specifically in neurons with a PSEN-1 mutation. These results demonstrate a hypermetabolic phenotype in astrocytes with fAD mutations possibly linked to toxic glutamate accumulation. Our findings further identify metabolic imbalances that may occur in the early phases of AD pathophysiology.

2.
Biomedicines ; 10(11)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36359298

RESUMEN

Characterising Alzheimer's disease (AD) as a metabolic disorder of the brain is gaining acceptance based on the pathophysiological commonalities between AD and major metabolic disorders. Therefore, metabolic interventions have been explored as a strategy for brain energetic rescue. Amongst these, medium-chain fatty acid (MCFA) supplementations have been reported to rescue the energetic failure in brain cells as well as the cognitive decline in patients. Short-chain fatty acids (SCFA) have also been implicated in AD pathology. Due to the increasing therapeutic interest in metabolic interventions and brain energetic rescue in neurodegenerative disorders, in this review, we first summarise the role of SCFAs and MCFAs in AD. We provide a comparison of the main findings regarding these lipid species in established AD animal models and recently developed human cell-based models of this devastating disorder.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA