Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 25(10)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37895583

RESUMEN

We suggest a method to improve quantum correlations in cavity magnomechanics, through the use of a coherent feedback loop and magnon squeezing. The entanglement of three bipartition subsystems: photon-phonon, photon-magnon, and phonon-magnon, is significantly improved by the coherent feedback-control method that has been proposed. In addition, we investigate Einstein-Podolsky-Rosen steering under thermal effects in each of the subsystems. We also evaluate the scheme's performance and sensitivity to magnon squeezing. Furthermore, we study the comparison between entanglement and Gaussian quantum discord in both steady and dynamical states.

2.
Sci Rep ; 13(1): 3833, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882480

RESUMEN

In this paper, we present a coherent feedback loop scheme to enhance the magnon-photon-phonon entanglement in cavity magnomechanics. We provide a proof that the steady state and dynamical state of the system form a genuine tripartite entanglement state. To quantify the entanglement in the bipartite subsystem and the genuine tripartite entanglement, we use the logarithmic negativity and the minimum residual contangle, respectively, in both the steady and dynamical regimes. We demonstrate the feasibility of our proposal by implementing it with experimentally realizable parameters to achieve the tripartite entanglement. We also show that the entanglement can be significantly improved with coherent feedback by appropriately tuning the reflective parameter of the beam splitter and that it is resistant to environmental thermalization. Our findings pave the way for enhancing entanglement in magnon-photon-phonon systems and may have potential applications in quantum information.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA