Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38389933

RESUMEN

Photosensitivity to structurally diverse drugs is a common but under-reported adverse cutaneous reaction and can be classified as phototoxic or photoallergic. Phototoxic reactions occur when the skin is exposed to sunlight after administering topical or systemic medications that exhibit photosensitizing activity. These reactions depend on the dose of medication, degree of exposure to ultraviolet light, type of ultraviolet light, and sufficient skin distribution volume. Accurate prediction of the incidence and phototoxic response severity is challenging due to a paucity of literature, suggesting that phototoxicity may be more frequent than reported. This paper reports an extensive literature review on phototoxic drugs; the review employed pre-determined search criteria that included meta-analyses, systematic reviews, literature reviews, and case reports freely available in full text. Additional reports were identified from reference sections that contributed to the understanding of phototoxicity. The following drugs and/or drug classes are discussed: amiodarone, voriconazole, chlorpromazine, doxycycline, fluoroquinolones, hydrochlorothiazide, nonsteroidal anti-inflammatory drugs, and vemurafenib. In reviewing phototoxic skin reactions, this review highlights drug molecular structures, their reactive pathways, and, as there is a growing association between photosensitizing drugs and the increasing incidence of skin cancer, the consequential long-term implications of photocarcinogenesis.

2.
Am J Clin Exp Urol ; 11(2): 103-120, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168941

RESUMEN

Regular consumption of cruciferous vegetables has numerous health benefits, including reduced cancer risk and improved patient outcomes. Sulforaphane (SFN) is an isothiocyanate found in cruciferous vegetables with a chemoprotective role against epithelial cancers, particularly of the bladder. Epithelial cells have several functions, including secretion, absorption, filtration, and protection from environmental insults. The specialized stratified epithelium of the bladder has direct and frequent contact with carcinogenic agents, increasing the likelihood of cancer initiation at this site. Carcinogen exposure, particularly from cigarette smoke or occupational exposure to aromatic amines, are the most significant risk factors for bladder cancer due to their ability to activate inflammatory pathways, induce free radicals, and damage DNA. SFN acts as an antioxidant by activating phase II enzymes involved in carcinogen detoxification to prevent DNA damage and inhibit tumor initiation, modulates multiple signaling pathways to inhibit tumor growth and progression, and has anti-inflammatory and immune-modulating properties to help protect against cancer. Due to these chemoprotective mechanisms, SFN has been studied as both mono- and adjuvant therapy in several bladder cancer models. Here we present a review of the effects of SFN on carcinogen-induced bladder cancer to support the inclusion of cruciferous vegetables as a chemoprotective strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA