Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioelectromagnetics ; 37(3): 141-151, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26991689

RESUMEN

Electric fields produced by advanced pulsed microwave transmitter technology now readily exceed the Institute of Electrical and Electronic Engineers (IEEE) C.95.1 peak E-field limit of 100 kV/m, highlighting a need for scientific validation of such a specific limit. Toward this goal, we exposed Jurkat Clone E-6 human lymphocyte preparations to 20 high peak power microwave (HPPM) pulses (120 ns duration) with a mean peak amplitude of 2.3 MV/m and standard deviation of 0.1 with the electric field at cells predicted to range from 0.46 to 2.7 MV/m, well in excess of current standard limit. We observed that membrane integrity and cell morphology remained unchanged 4 h after exposure and cell survival 24 h after exposure was not statistically different from sham exposure or control samples. Using flow cytometry to analyze membrane disruption and morphological changes per exposed cell, no changes were observed in HPPM-exposed samples. Current IEEE C95.1-2005 standards for pulsed radiofrequency exposure limits peak electric field to 100 kV/m for pulses shorter than 100 ms [IEEE (1995) PC95.1-Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic and Electromagnetic Fields, 0 Hz to 300 GHz, Institute of Electrical and Electronic Engineers: Piscataway, NJ, USA]. This may impose large exclusion zones that limit HPPM technology use. In this study, we offer evidence that maximum permissible exposure of 100 kV/m for peak electric field may be unnecessarily restrictive for HPPM devices. Bioelectromagnetics. 37:141-151, 2016. © 2016 Wiley Periodicals, Inc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA