Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Total Environ ; 716: 137044, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32059302

RESUMEN

Globally, conversion of pristine areas to anthropogenic landscapes is one of the main causes of ecosystem service losses. Land uses associated with urbanization and farming can be major sources of pollution to freshwaters promoting artificial inputs of several elements, leading to impaired water quality. However, how the effects of land use on freshwater quality are contingent on properties of the local landscape and climate is still poorly understood. The aim of this study was to evaluate the effects of landscape properties (morphometric measurements of lakes and their catchments), precipitation patterns, and land use properties (extent and proximity of the land use to freshwaters) on water quality of 98 natural lakes and reservoirs in northeast Brazil. Water quality impairment (WQI) was expressed as a composite variable incorporating parameters correlated with eutrophication including nitrogen (N), phosphorus (P) and Chlorophyll-a concentration. Regression tree analysis showed that WQI is mainly related to highly impacted "buffer areas". However, the effects of land use in these adjacent lands were contingent on precipitation variability for 13% of waterbodies and on surface area of the buffer in relation to the volume of waterbody (BA:Vol) for 87% of waterbodies. Overall, effects on WQI originating from the land use in the adjacent portion of the lake were amplified by high precipitation variability for ecosystems with highly impacted buffer areas and by high BA:Vol for ecosystems with less impacted buffer areas, indicating that ecosystems subjected to intense episodic rainfall events (e.g. storms) and higher buffer areas relative to aquatic ecosystem size (i.e. small waterbodies) are more susceptible to impacts of land use. Land use at the catchment scale was important for the largest ecosystems. Thus, our findings point toward the need for considering a holistic approach to managing water quality, which includes watershed management within the context of climate change.

2.
Environ Pollut ; 256: 113343, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31672373

RESUMEN

Caffeine is one of the most consumed substances, and it has been largely detected in aquatic ecosystems. We investigated the trends in caffeine consumption over three decades and its relationships with gross domestic product (GDP) and human development index (HDI) to understand global patterns and to identify potential hotspots of contamination. The total caffeine consumption is increasing mainly due to population growth. Moreover, caffeine consumption per capita is also increasing in some countries, such as Brazil, Italy, and Ethiopia. A high positive correlation between caffeine consumption per capita with HDI and GDP was found for coffee-importing countries in Europe, while a high negative correlation was found for coffee-exporting countries in Africa. The literature review showed that the highest caffeine concentrations coincide with countries that present an increasing caffeine consumption per capita. Also, approximately 35% of the caffeine concentrations reported in the literature were above the predicted no-effect concentration in the environment and, again, overlaps with countries with increasing per capita consumption. Despite the high degradation rate, caffeine consumption tends to increase in a near future, which may also increase the overall amount of caffeine that comes into the environment, possibly exceeding the thresholds of several species described as tolerant to the current environmental concentrations. Therefore, it is essential to prevent caffeine from reaching aquatic ecosystems, implementing sewage treatment systems, and improving their efficiency.


Asunto(s)
Cafeína/análisis , Café/química , Producto Interno Bruto , Contaminantes Químicos del Agua/análisis , Brasil , Cafeína/economía , Ecosistema , Etiopía , Europa (Continente) , Producto Interno Bruto/tendencias , Humanos , Italia
3.
BMC Bioinformatics ; 20(1): 274, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138128

RESUMEN

BACKGROUND: Flow cytometry (FCM) is one of the most commonly used technologies for analysis of numerous biological systems at the cellular level, from cancer cells to microbial communities. Its high potential and wide applicability led to the development of various analytical protocols, which are often not interchangeable between fields of expertise. Environmental science in particular faces difficulty in adapting to non-specific protocols, mainly because of the highly heterogeneous nature of environmental samples. This variety, although it is intrinsic to environmental studies, makes it difficult to adjust analytical protocols to maintain both mathematical formalism and comprehensible biological interpretations, principally for questions that rely on the evaluation of differences between cytograms, an approach also termed cytometric diversity. Despite the availability of promising bioinformatic tools conceived for or adapted to cytometric diversity, most of them still cannot deal with common technical issues such as the integration of differently acquired datasets, the optimal number of bins, and the effective correlation of bins to previously known cytometric populations. RESULTS: To address these and other questions, we have developed flowDiv, an R language pipeline for analysis of environmental flow cytometry data. Here, we present the rationale for flowDiv and apply the method to a real dataset from 31 freshwater lakes in Patagonia, Argentina, to reveal significant aspects of their cytometric diversities. CONCLUSIONS: flowDiv provides a rather intuitive way of proceeding with FCM analysis, as it combines formal mathematical solutions and biological rationales in an intuitive framework specifically designed to explore cytometric diversity.


Asunto(s)
Biodiversidad , Citometría de Flujo/métodos , Programas Informáticos , Humanos , Lagos , Microbiota , Análisis de Componente Principal , Estadísticas no Paramétricas
4.
Sci Total Environ ; 672: 990-1003, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30981171

RESUMEN

Bacterioplankton communities have a pivotal role in the global carbon cycle. Still the interaction between microbial community and dissolved organic matter (DOM) in freshwater ecosystems remains poorly understood. Here, we report results from a 12-day mesocosm study performed in the epilimnion of a tropical lake, in which inorganic nutrients and allochthonous DOM were supplemented under full light and shading. Although the production of autochthonous DOM triggered by nutrient addition was the dominant driver of changes in bacterial community structure, temporal covariations between DOM optical proxies and bacterial community structure revealed a strong influence of community shifts on DOM fate. Community shifts were coupled to a successional stepwise alteration of the DOM pool, with different fractions being selectively consumed by specific taxa. Typical freshwater clades as Limnohabitans and Sporichthyaceae were associated with consumption of low molecular weight carbon, whereas Gammaproteobacteria and Flavobacteria utilized higher molecular weight carbon, indicating differences in DOM preference among clades. Importantly, Verrucomicrobiaceae were important in the turnover of freshly produced autochthonous DOM, ultimately affecting light availability and dissolved organic carbon concentrations. Our findings suggest that taxonomically defined bacterial assemblages play definite roles when influencing DOM fate, either by changing specific fractions of the DOM pool or by regulating light availability and DOC levels.


Asunto(s)
Bacterias/crecimiento & desarrollo , Monitoreo del Ambiente , Sustancias Húmicas/análisis , Lagos/microbiología , Microbiología del Agua , Contaminantes del Agua/análisis , Organismos Acuáticos , Carbono , Ecosistema , Lagos/química , Clima Tropical
5.
Sci Total Environ ; 664: 283-295, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-30743122

RESUMEN

The role of tropical lakes and reservoirs in the global carbon cycle has received increasing attention in the past decade, but our understanding of its variability is still limited. The metabolism of tropical systems may differ profoundly from temperate systems due to the higher temperatures and wider variations in precipitation. Here, we investigated the spatial and temporal patterns of the variability in the partial pressure of carbon dioxide (pCO2) and its drivers in a set of 102 low-latitude lakes and reservoirs that encompass wide gradients of precipitation, productivity and landscape properties (lake area, perimeter-to-area ratio, catchment size, catchment area-to-lake area ratio, and types of catchment land use). We used multiple regressions and structural equation modeling (SEM) to determine the direct and indirect effects of the main in-lake variables and landscape properties on the water pCO2 variance. We found that these systems were mostly supersaturated with CO2 (92% spatially and 72% seasonally) regardless of their trophic status and landscape properties. The pCO2 values (9-40,020 µatm) were within the range found in tropical ecosystems, and higher (p < 0.005) than pCO2 values recorded from high-latitude ecosystems. Water volume had a negative effect on the trophic state (r = -0.63), which mediated a positive indirect effect on pCO2 (r = 0.4), representing an important negative feedback in the context of climate change-driven reduction in precipitation. Our results demonstrated that precipitation drives the pCO2 seasonal variability, with significantly higher pCO2 during the rainy season (F = 16.67; p < 0.001), due to two potential main mechanisms: (1) phytoplankton dilution and (2) increasing inputs of terrestrial CO2 from the catchment. We conclude that at low latitudes, precipitation is a major climatic driver of pCO2 variability by influencing volume variations and linking lentic ecosystems to their catchments.

6.
Phys Life Rev ; 31: 320-331, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30635174

RESUMEN

Collective or group intelligence is manifested in the fact that a team of cooperating agents can solve problems more efficiently than when those agents work in isolation. Although cooperation is, in general, a successful problem solving strategy, it is not clear whether it merely speeds up the time to find the solution, or whether it alters qualitatively the statistical signature of the search for the solution. Here we review and offer insights on two agent-based models of distributed cooperative problem-solving systems, whose task is to solve a cryptarithmetic puzzle. The first model is the imitative learning search in which the agents exchange information on the quality of their partial solutions to the puzzle and imitate the most successful agent in the group. This scenario predicts a very poor performance in the case imitation is too frequent or the group is too large, a phenomenon akin to Groupthink of social psychology. The second model is the blackboard organization in which agents read and post hints on a public blackboard. This brainstorming scenario performs the best when there is a stringent limit to the amount of information that is exhibited on the board. Both cooperative scenarios produce a substantial speed up of the time to solve the puzzle as compared with the situation where the agents work in isolation. The statistical signature of the search, however, is the same as that of the independent search.


Asunto(s)
Inteligencia , Modelos Neurológicos , Humanos , Solución de Problemas
7.
Evolution ; 72(1): 18-29, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29120033

RESUMEN

The so-called size-complexity rule claims the existence of a positive correlation between organism size and number of cell types. In this spirit, here we address the relationship between organism size and number of potential tasks that can be performed. The modeling relies on the assumption that the states of the cells within the aggregates are such that the maximum fitness is realized, but also relies on the existence of tradeoffs among the distinct functions. For group sizes larger than the number of potential tasks, fitness maximization is attained when all cells in group specialize in a given task. Under this scenario, the number of potential tasks equals the number of cell types. We have found that the morphology and the topology of aggregates, as well as the developmental mode, strongly influence the dynamics of body formation. Particularly, it has been observed that more compact structures, such as sphere-like structures, are more likely to follow the claim of the size-complexity rule, whereas more fragile structures such as linear chains, which are more vulnerable to drastic changes due to division mechanisms, can, in a broad scenario, violate the size-complexity rule.


Asunto(s)
Modelos Biológicos , Evolución Biológica , Tamaño Corporal , Fenómenos Fisiológicos Celulares , Cianobacterias/citología
8.
Microb Ecol ; 75(1): 52-63, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28721503

RESUMEN

Viruses are the most abundant components of microbial food webs and play important ecological and biogeochemical roles in aquatic ecosystems. Virioplankton is regulated by several environmental factors, such as salinity, turbidity, and humic substances. However, most of the studies aimed to investigate virioplankton regulation were conducted in temperate systems combining a limited range of environmental variables. In this study, virus abundance and production were determined and their relation to bacterial and limnological variables was assessed in 20 neighboring shallow tropical coastal lagoons that present wide environmental gradients of turbidity (2.32-571 NTU), water color (1.82-92.49 m-1), dissolved organic carbon (0.71-16.7 mM), salinity (0.13-332.1‰), and chlorophyll-a (0.28 to 134.5 µg L-1). Virus abundance varied from 0.37 × 108 to 117 × 108 virus-like-particle (VLP) mL-1, with the highest values observed in highly salty aquatic systems. Salinity and heterotrophic bacterial abundance were the main variables positively driving viral abundances in these lagoons. We suggest that, with increased salinity, there is a decrease in the protozoan control on bacterial populations and lower bacterial diversity (higher encounter rates with virus specific hosts), both factors positively affecting virus abundance. Virus production varied from 0.68 × 107 to 56.5 × 107 VLP mL-1 h-1 and was regulated by bacterial production and total phosphorus, but it was not directly affected by salinity. The uncoupling between virus abundance and virus production supports that the hypothesis that the lack of grazing pressure on viral and bacterial populations is an important mechanism causing virus abundance to escalate with increasing salt concentrations.


Asunto(s)
Plancton/aislamiento & purificación , Agua de Mar/química , Agua de Mar/virología , Virus/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Ecosistema , Plancton/clasificación , Plancton/genética , Plancton/crecimiento & desarrollo , Salinidad , Agua de Mar/microbiología , Virus/clasificación , Virus/genética , Virus/crecimiento & desarrollo
9.
Front Microbiol ; 8: 1505, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28848518

RESUMEN

The canonical Redfield C:N:P ratio for algal biomass is often not achieved in inland waters due to higher C and N content and more variability when compared to the oceans. This has been attributed to much lower residence times and higher contributions of the watershed to the total organic matter pool of continental ecosystems. In this study we examined the effect of water residence times in low latitude lakes (in a gradient from humid to a semi-arid region) on seston elemental ratios in different size fractions. We used lake water specific conductivity as a proxy for residence time in a region of Eastern Brazil where there is a strong precipitation gradient. The C:P ratios decreased in the seston and bacterial size-fractions and increased in the dissolved fraction with increasing water retention time, suggesting uptake of N and P from the dissolved pool. Bacterial abundance, production and respiration increased in response to increased residence time and intracellular nutrient availability in agreement with the growth rate hypothesis. Our results reinforce the role of microorganisms in shaping the chemical environment in aquatic systems particularly at long water residence times and highlights the importance of this factor in influencing ecological stoichiometry in all aquatic ecosystems.

11.
Biochim Biophys Acta Gen Subj ; 1861(4): 900-909, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28130157

RESUMEN

BACKGROUND: The study of acridine orange (AO) spectral characteristics and the quenching of its singlet and triplet excited states by TEMPO radical at its binding to DNA in the function of the DNA concentration and in the absence and presence of NaCl is reported. METHODS: The study was performed using steady-state and time resolved optical absorption and florescence, fluorescence correlation spectroscopy and resonant light scattering techniques. RESULTS: The presence of different species in equilibrium: AO monomers and aggregates bound to DNA, has been demonstrated, their relative content depending on the DNA and the AO concentrations. At high DNA concentration the AO monomers are protected against the contact with other molecules, thus reducing the AO excited state quenching. The addition of NaCl reduces the AO binding constant to DNA, thus reducing the AO and DNA aggregation. CONCLUSIONS: The interaction of AO with DNA is a complex process, including aggregation and disaggregation of both components. This modifies the AO excited state characteristics and AO accessibility to other molecules. The salt reduces the DNA effects on the AO excited state characteristics thus attenuating its effects on the AO efficacy in applications. GENERAL SIGNIFICANCE: This study demonstrates that the interaction of photosensitizers with DNA, depending on their relative concentrations, can both decrease and increase the photosensitizer efficacy in applications. The salt is able to attenuate these effects.


Asunto(s)
Naranja de Acridina/química , ADN/química , Concentración Osmolar , Cloruro de Sodio/química , Espectrometría de Fluorescencia/métodos
12.
R Soc Open Sci ; 3(11): 160544, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28018642

RESUMEN

The evolutionary mechanisms of energy efficiency have been addressed. One important question is to understand how the optimized usage of energy can be selected in an evolutionary process, especially when the immediate advantage of gathering efficient individuals in an energetic context is not clear. We propose a model of two competing metabolic strategies differing in their resource usage, an efficient strain which converts resource into energy at high efficiency but displays a low rate of resource consumption, and an inefficient strain which consumes resource at a high rate but at low yield. We explore the dynamics in both well-mixed and structured populations. The selection for optimized energy usage is measured by the likelihood that an efficient strain can invade a population of inefficient strains. It is found that the parameter space at which the efficient strain can thrive in structured populations is always broader than observed in well-mixed populations.

13.
Phys Rev E ; 93(5): 052401, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27300918

RESUMEN

Understanding why strains with different metabolic pathways that compete for a single limiting resource coexist is a challenging issue within a theoretical perspective. Previous investigations rely on mechanisms such as group or spatial structuring to achieve a stable coexistence between competing metabolic strategies. Nevertheless, coexistence has been experimentally reported even in situations where it cannot be attributed to spatial effects [Heredity 100, 471 (2008)HDTYAT0018-067X10.1038/sj.hdy.6801073]. According to that study a toxin expelled by one of the strains can be responsible for the stable maintenance of the two strain types. We propose a resource-based model in which an efficient strain with a slow metabolic rate competes with a second strain type which presents a fast but inefficient metabolism. Moreover, the model assumes that the inefficient strain produces a toxin as a by-product. This toxin affects the growth rate of both strains with different strength. Through an extensive exploration of the parameter space we determine the situations at which the coexistence of the two strains is possible. Interestingly, we observe that the resource influx rate plays a key role in the maintenance of the two strain types. In a scenario of resource scarcity the inefficient is favored, though as the resource influx rate is augmented the coexistence becomes possible and its domain is enlarged.


Asunto(s)
Redes y Vías Metabólicas , Modelos Biológicos
14.
Front Microbiol ; 6: 1202, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26579108

RESUMEN

Cyanobacteria are aquatic photosynthetic microorganisms. While of enormous ecological importance, they have also been linked to human and animal illnesses around the world as a consequence of toxin production by some species. Cylindrospermopsis raciborskii, a filamentous nitrogen-fixing cyanobacterium, has attracted considerable attention due to its potential toxicity and ecophysiological adaptability. We investigated whether C. raciborskii could be affected by ultraviolet (UV) radiation. Non-axenic cultures of C. raciborskii were exposed to three UV treatments (UVA, UVB, or UVA + UVB) over a 6 h period, during which cell concentration, viability and ultrastructure were analyzed. UVA and UVA + UVB treatments showed significant negative effects on cell concentration (decreases of 56.4 and 64.3%, respectively). This decrease was directly associated with cell death as revealed by a cell viability fluorescent probe. Over 90% of UVA + UVB- and UVA-treated cells died. UVB did not alter cell concentration, but reduced cell viability in almost 50% of organisms. Transmission electron microscopy (TEM) revealed a drastic loss of thylakoids, membranes in which cyanobacteria photosystems are localized, after all treatments. Moreover, other photosynthetic- and metabolic-related structures, such as accessory pigments and polyphosphate granules, were damaged. Quantitative TEM analyses revealed a 95.8% reduction in cell area occupied by thylakoids after UVA treatment, and reduction of 77.6 and 81.3% after UVB and UVA + UVB treatments, respectively. Results demonstrated clear alterations in viability and photosynthetic structures of C. raciborskii induced by various UV radiation fractions. This study facilitates our understanding of the subcellular organization of this cyanobacterium species, identifies specific intracellular targets of UVA and UVB radiation and reinforces the importance of UV radiation as an environmental stressor.

15.
Microb Ecol ; 66(4): 871-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23963223

RESUMEN

The dissolved organic carbon (DOC) pool is composed of several organic carbon compounds from different carbon sources. Each of these sources may support different bacterial growth rates, but few studies have specifically analyzed the effects of the combination of different carbon sources on bacterial metabolism. In this study, we evaluated the response of several metabolic parameters, including bacterial biomass production (BP), bacterial respiration (BR), bacterial growth efficiency (BGE), and bacterial community structure, on the presence of three DOC sources alone and in combination. We hypothesized that the mixture of different DOC sources would increase the efficiency of carbon use by bacteria (BGE). We established a full-factorial substitutive design (seven treatments) in which the effects of the number and identity of DOC sources on bacterial metabolism were evaluated. We calculated the expected metabolic rates of the combined DOC treatments based on the single-DOC treatments and observed a positive interaction on BP, a negative interaction on BR, and, consequently, a positive interaction on BGE for the combinations. The bacterial community composition appeared to have a minor impact on differences in bacterial metabolism among the treatments. Our data indicate that mixtures of DOC sources result in a more efficient biological use of carbon. This study provides strong evidence that the mixture of different DOC sources is a key factor affecting the role of bacteria in the carbon flux of aquatic ecosystems.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Carbono/metabolismo , Agua Dulce/microbiología , Bacterias/genética , Bacterias/aislamiento & purificación , Carbono/análisis , Ecosistema , Agua Dulce/análisis , Compuestos Orgánicos/análisis , Compuestos Orgánicos/metabolismo , Microbiología del Agua
16.
Front Microbiol ; 4: 167, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23801986

RESUMEN

Current models and observations indicate that bacterial respiration should increase and growth efficiency (BGE) should decrease with increasing temperatures. However, these models and observations are mostly derived from data collected in temperate regions, and the tropics are under-represented. The aim of this work was to compare bacterial metabolism, namely bacterial production (BP) and respiration (BR), bacterial growth efficiency (BGE) and bacterial carbon demand (BCD) between tropical and temperate ecosystems via a literature review and using unpublished data. We hypothesized that (1) tropical ecosystems have higher metabolism than temperate ones and, (2) that BGE is lower in tropical relative to temperate ecosystems. We collected a total of 498 coupled BP and BR observations (N total = 498; N temperate = 301; N tropical = 197), calculated BGE (BP/(BP+BR)) and BCD (BP+BR) for each case and examined patterns using a model II regression analysis and compared each parameter between the two regions using non-parametric Mann-Whitney U test. We observed a significant positive linear regression between BR and BP for the whole dataset, and also for tropical and temperate data separately. We found that BP, BR and BCD were higher in the tropics, but BGE was lower compared to temperate regions. Also, BR rates per BP unit were at least two fold higher in the tropics than in temperate ecosystems. We argue that higher temperature, nutrient limitation, and light exposure all contribute to lower BGE in the tropics, mediated through effects on thermodynamics, substrate stoichiometry, nutrient availability and interactions with photochemically produced compounds. More efforts are needed in this study area in the tropics, but our work indicates that bottom-up (nutrient availability and resource stoichiometry) and top-down (grazer pressure) processes, coupled with thermodynamic constraints, might contribute to the lower BGE in the tropics relative to temperate regions.

17.
Environ Sci Pollut Res Int ; 16(5): 531-8, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19462194

RESUMEN

BACKGROUND, AIM, AND SCOPE: Dissolved humic substances (HS) usually comprise 50-80% of the dissolved organic carbon (DOC) in aquatic ecosystems. From a trophic and biogeochemical perspective, HS has been considered to be highly refractory and is supposed to accumulate in the water. The upsurge of the microbial loop paradigm and the studies on HS photo-degradation into labile DOC gave rise to the belief that microbial processing of DOC should sustain aquatic food webs in humic waters. However, this has not been extensively supported by the literature, since most HS and their photo-products are often oxidized by microbes through respiration in most nutrient-poor humic waters. Here, we review basic concepts, classical studies, and recent data on bacterial and photo-degradation of DOC, comparing the rates of these processes in highly humic ecosystems and other aquatic ecosystems. MATERIALS AND METHODS: We based our review on classical and recent findings from the fields of biogeochemistry and microbial ecology, highlighting some odd results from highly humic Brazilian tropical lagoons, which can reach up to 160 mg C L(-1). RESULTS AND DISCUSSION: Highly humic tropical lagoons showed proportionally lower bacterial production rates and higher bacterial respiration rates (i.e., lower bacterial growth efficiency) than other lakes. Zooplankton showed similar delta(13)C to microalgae but not to humic DOC in these highly humic lagoons. Thus, the data reviewed here do not support the microbial loop as an efficient matter transfer pathway in highly humic ecosystems, where it is supposed to play its major role. In addition, we found that some tropical humic ecosystems presented the highest potential DOC photo-chemical mineralization (PM) rates reported in the literature, exceeding up to threefold the rates reported for temperate humic ecosystems. We propose that these atypically high PM rates are the result of a joint effect of the seasonal dynamics of allochthonous humic DOC input to these ecosystems and the high sunlight incidence throughout the year. The sunlight action on DOC is positive to microbial consumption in these highly humic lagoons, but little support is given to the enhancement of bacterial growth efficiency, since the labile photo-chemical products are mostly respired by microbes in the nutrient-poor humic waters. CONCLUSIONS: HS may be an important source of energy for aquatic bacteria in humic waters, but it is probably not as important as a substrate to bacterial growth and to aquatic food webs, since HS consumption is mostly channeled through microbial respiration. This especially seems to be the case of humic-rich, nutrient-poor ecosystems, where the microbial loop was supposed to play its major role. Highly humic ecosystems also present the highest PM rates reported in the literature. Finally, light and bacteria can cooperate in order to enhance total carbon degradation in highly humic aquatic ecosystems but with limited effects on aquatic food webs. RECOMMENDATIONS AND PERSPECTIVES: More detailed studies using C- and N-stable isotope techniques and modeling approaches are needed to better understand the actual importance of HS to carbon cycling in highly humic waters.


Asunto(s)
Carbono/química , Ecosistema , Sustancias Húmicas/análisis , Agua de Mar/química , Brasil
18.
Microb Ecol ; 57(4): 657-66, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-18985269

RESUMEN

The main goal of this research was to evaluate whether the mixture of fresh labile dissolved organic matter (DOM) and accumulated refractory DOM influences bacterial production, respiration, and growth efficiency (BGE) in aquatic ecosystems. Bacterial batch cultures were set up using DOM leached from aquatic macrophytes as the fresh DOM pool and DOM accumulated from a tropical humic lagoon. Two sets of experiments were performed and bacterial growth was followed in cultures composed of each carbon substrate (first experiment) and by carbon substrates combined (second experiment), with and without the addition of nitrogen and phosphorus. In both experiments, bacterial production, respiration, and BGE were always higher in cultures with N and P additions, indicating a consistent inorganic nutrient limitation. Bacterial production, respiration, and BGE were higher in cultures set up with leachate DOM than in cultures set up with humic DOM, indicating that the quality of the organic matter pool influenced the bacterial growth. Bacterial production and respiration were higher in the mixture of substrates (second experiment) than expected by bacterial production and respiration in single substrate cultures (first experiment). We suggest that the differences in the concentration of some compounds between DOM sources, the co-metabolism on carbon compound decomposition, and the higher diversity of molecules possibly support a greater bacterial diversity which might explain the higher bacterial growth observed. Finally, our results indicate that the mixture of fresh labile and accumulated refractory DOM that naturally occurs in aquatic ecosystems could accelerate the bacterial growth and bacterial DOM removal.


Asunto(s)
Bacterias/crecimiento & desarrollo , Compuestos Orgánicos/metabolismo , Microbiología del Agua , Bacterias/metabolismo , Carbono/metabolismo , Ecosistema , Agua Dulce/microbiología , Nitrógeno/metabolismo , Nymphaea/química , Fósforo/metabolismo , Potamogetonaceae/química , Typhaceae/química
19.
FEMS Microbiol Ecol ; 56(1): 8-17, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16542400

RESUMEN

Dissolved organic carbon (DOC) photochemical reactions establish important links between DOC and planktonic bacteria. We hypothesize that seasonal changes in DOC quality, related to the flood pulse, drive the effects of light-DOC interactions on uptake by planktonic bacteria uptake in clear-water Amazonian ecosystems. Water samples from two ecosystems (one lake and one stream) were incubated in sunlight during different hydrological periods and were then exposed to bacterial degradation. Photochemical and bacterial degradation were driven by seasonal DOC inputs. Bacterial mineralization was the main degradation pathway of autochthonous DOC in the lake, while allochthonous DOC was more available for photochemical oxidation. We suggest that sunlight enhances the bacterial uptake of refractory DOC but does not alter uptake of labile forms. We also observed a positive relationship between sunlight and bacterial degradation of DOC, instead of competition. We conclude that photochemical reactions and bacteria complementarily degrade the different sources of DOC during the flood pulse in Amazonian clear-water aquatic ecosystems.


Asunto(s)
Bacterias/metabolismo , Carbono/metabolismo , Ecosistema , Microbiología del Agua , Brasil , Clorofila/análisis , Clorofila A , Agua Dulce , Fotólisis , Ríos , Estaciones del Año , Luz Solar
20.
An. bras. dermatol ; An. bras. dermatol;76(5): 585-592, set.-out. 2001. ilus
Artículo en Portugués, Inglés | LILACS | ID: lil-344177

RESUMEN

O lúpus eritematoso é doença auto-imune, cujas manifestações variam de lesões cutâneas isoladas ao envolvimento de vários sistemas. A síndrome nefrótica ocorre em carca de 25 por cento dos casos. Caracteriza-se por proteinúria, hipoaluminemia, hipercolesterolemia e edema periférico. Um estado hipercoagulável acompanha essa síndrome, freqüentemente determinando complicações trombóticas. O caso relatado refere-se a uma paciente de 32 anos que apresentava lúpus eritematoso cutâneo crônico e, após seis anos de evolução, desenvolveu síndorme nefrótica complicada por trombose na veia cava inferior. Foi tratada com prednisona, enalapril,furosemida, albumina intravenosa, heparina e, posteriormente, warfarin, apresentando boa resposta. O caso enfatiza a necessidade de seguimento dos portadores de lúpus eritematoso cutâneo crônico a fim de serem detectados sinais de sistematização da doença


Asunto(s)
Humanos , Femenino , Adulto , Lupus Eritematoso Sistémico , Nefritis Lúpica , Síndrome Nefrótico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA