Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189930

RESUMEN

The availability of high-throughput sequencing technologies increased our understanding of different genomes. However, the genomes of all living organisms still have many unidentified coding sequences. The increased number of missing small open reading frames (sORFs) is due to the length threshold used in most gene identification tools, which is true in the genic and, more importantly and surprisingly, in the intergenic regions. Scanning the cucumber genome intergenic regions revealed 420 723 sORF. We excluded 3850 sORF with similarities to annotated cucumber proteins. To propose the functionality of the remaining 416 873 sORF, we calculated their codon adaptation index (CAI). We found 398 937 novel sORF (nsORF) with CAI ≥ 0.7 that were further used for downstream analysis. Searching against the Rfam database revealed 109 nsORFs similar to multiple RNA families. Using SignalP-5.0 and NLS, identified 11 592 signal peptides. Five predicted proteins interacting with Meloidogyne incognita and Powdery mildew proteins were selected using published transcriptome data of host-pathogen interactions. Gene ontology enrichment interpreted the function of those proteins, illustrating that nsORFs' expression could contribute to the cucumber's response to biotic and abiotic stresses. This research highlights the importance of previously overlooked nsORFs in the cucumber genome and provides novel insights into their potential functions.

2.
Plant Physiol Biochem ; 141: 332-342, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31207494

RESUMEN

Plant-parasitic nematodes cause major agricultural losses worldwide. Examining the molecular mechanisms underlying plant-nematode interactions and how plants respond to different invading pathogens is attracting major attention to reduce the expanding gap between agricultural production and the needs of the growing world population. This review summarizes the most recent developments in plant-nematode interactions and the diverse approaches used to improve plant resistance against root knot nematode (RKN). We will emphasize the recent rapid advances in genome sequencing technologies, small interfering RNA techniques (RNAi) and targeted genome editing which are contributing to the significant progress in understanding the plant-nematode interaction mechanisms. Also, molecular approaches to improve plant resistance against nematodes are considered.


Asunto(s)
Interacciones Huésped-Parásitos , Nematodos/patogenicidad , Raíces de Plantas/parasitología , Plantas/parasitología , Animales , Mapeo Cromosómico , Biología Computacional/métodos , Femenino , Genoma de Planta , Masculino , Enfermedades de las Plantas/parasitología , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas/genética , Plantas/genética , Plantas Modificadas Genéticamente/parasitología , Sitios de Carácter Cuantitativo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transcriptoma , Virulencia/genética
3.
BMC Genomics ; 12: 220, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21569240

RESUMEN

BACKGROUND: Root-knot nematodes are sedentary endoparasites that can infect more than 3000 plant species. Root-knot nematodes cause an estimated $100 billion annual loss worldwide. For successful establishment of the root-knot nematode in its host plant, it causes dramatic morphological and physiological changes in plant cells. The expression of some plant genes is altered by the nematode as it establishes its feeding site. RESULTS: We examined the expression of soybean (Glycine max) genes in galls formed in roots by the root-knot nematode, Meloidogyne incognita, 12 days and 10 weeks after infection to understand the effects of infection of roots by M. incognita. Gene expression was monitored using the Affymetrix Soybean GeneChip containing 37,500 G. max probe sets. Gene expression patterns were integrated with biochemical pathways from the Kyoto Encyclopedia of Genes and Genomes using PAICE software. Genes encoding enzymes involved in carbohydrate and cell wall metabolism, cell cycle control and plant defense were altered. CONCLUSIONS: A number of different soybean genes were identified that were differentially expressed which provided insights into the interaction between M. incognita and soybean and into the formation and maintenance of giant cells. Some of these genes may be candidates for broadening plants resistance to root-knot nematode through over-expression or silencing and require further examination.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Glycine max/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Raíces de Plantas/genética , Tumores de Planta/genética , Tylenchoidea/fisiología , Animales , Carbono/metabolismo , Pared Celular/genética , Metabolismo Energético/genética , Genes de Plantas/genética , Mitosis/genética , Proteínas de Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología , Tumores de Planta/parasitología , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Programas Informáticos , Glycine max/citología , Glycine max/metabolismo , Glycine max/parasitología
4.
Exp Parasitol ; 127(1): 90-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20599433

RESUMEN

RNAi constructs targeted to four different genes were examined to determine their efficacy to reduce galls formed by Meloidogyne incognita in soybean roots. These genes have high similarity with essential soybean cyst nematode (Heterodera glycines) and Caenorhabditis elegans genes. Transformed roots were challenged with M. incognita. Two constructs, targeted to genes encoding tyrosine phosphatase (TP) and mitochondrial stress-70 protein precursor (MSP), respectively, strongly interfered with M. incognita gall formation. The number of galls formed on roots transformed with constructs targeting the M. incognita TP and MSP genes was reduced by 92% and 94.7%, respectively. The diameter of M. incognita inside these transformed roots was 5.4 and 6.5 times less than the diameter of M. incognita found inside control plants transformed with the empty vector. These results indicate that silencing the genes encoding TP and MSP can greatly decrease gall formation and shows a promising solution for broadening resistance of plants against this plant-parasitic nematode.


Asunto(s)
Glycine max/parasitología , Tumores de Planta/parasitología , Interferencia de ARN , Tylenchoidea/genética , Animales , Proteínas del Helminto/genética , L-Lactato Deshidrogenasa/genética , Raíces de Plantas/parasitología , Proteínas Tirosina Fosfatasas/genética , ARN de Helminto/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tylenchoidea/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA