RESUMEN
Tropical forests on karstic relief (tropical karst forest) are among the most species-rich biomes. These forests play pivotal roles as global climate regulators and for human wellbeing. Their long-term conservation could be central to global climate mitigation and biodiversity conservation. In Mexico, karst landscapes occupy 20% of the total land surface and are distributed mainly in the southeast of the country, along the eastern slope, and in the Yucatan Peninsula. Within each of these areas, the following types of karst occur: coastal karst, plain karst, hill karst, and mountain karst (low, medium, high). Mountain karst cover 2.07% of Mexico's land surface and are covered by tropical rainforests, montane cloud forests, and tropical deciduous forests. These are probably one of the most diverse biomes in Mexico. However, the mountain karst forests of Mexico have received little attention, and very little is known about their diversity. Here, we evaluated the vascular plant species richness within the mountain karst forests of Mexico. We assembled the first, largest, and most comprehensive datasets of Mexican mountain karst forest species, from different public databases (CONABIO, GBIF, IBdata-UNAM), which included a critical review of all data. We compiled a list of the families, genera, and species present within the mountain karst forests of Mexico. Taxa that best characterize these forests were identified based on their spatial correlation with this biome. We explored biodiversity patterns, identifying areas with the highest species richness, endemism centers, and areas of relatively low sampling intensity. We found that within the mountain karst forests of Mexico there are representatives of 11,771 vascular plant species (253 families and 2,254 genera), ca. 50% of the Mexican flora. We identified 372 species endemic to these forests. According to preliminary IUCN red list criteria, 2,477 species are under some category of conservation risk, of which 456 (3.8%) are endangered. Most of the Mexican mountain karst forests have been extensively explored and six allopatric, species-rich areas were identified. Compared to other regions in the world, the mountain karst forests of Mexico are one of the most diverse biomes. They contain more species than some entire montane systems in Mexico such as Sierra Madre Oriental, and Sierra Madre del Sur. Also, the mountain karst forests of Mexico are most diverse than similar forests of South America and Asia, even if considering the effect of different sampling areas. The fact that mountain karst forests are embedded in areas of high biotic diversity, probably contributes to their great floristic diversity. Thus, the mountain karst forests of Mexico are an important source of diversity and shelters a large percentage of the Mexican flora.
Asunto(s)
Bosques , Tracheophyta , Humanos , México , Ecosistema , BiodiversidadRESUMEN
Karst is defined as landscapes that are underlain by soluble rock in which there is appreciable water movement arising from a combination of high rock solubility and well-developed secondary (fracture) porosity. Karsts occupy approximately 20% of the planet's dry ice-free land and are of great socioeconomic importance, as they supply water to up to 25% of the world's population and represent landscapes of cultural and touristic importance. In Southeast Asia karst is associated with high species-richness and endemism in plants and seen as priority areas for the conservation of biodiversity. There has been little research into the floras associated with karst in South America, most of which occurs in Brazil. We therefore sought to evaluate the importance of Brazilian karst with respect to its species-richness and endemism. We sought to do so using curated plant specimen data in the Botanical Information and Ecology Network (BIEN) dataset. We show that, except for Amazonia, the BIEN dataset is representative of the Brazilian flora with respect to the total number of species and overall patterns of species richness. We found that karst is under-sampled, as is the case for much of Brazil. We also found that whilst karst represent an important source of plant diversity for Brazil, including populations of approximately 1/3 of the Brazilian flora, it is not significantly more species-rich or richer in small-range and endemic species than surrounding landscapes. Similarly, whilst important for conservation, comprising populations of 26.5-37.4% of all Brazilian species evaluated as of conservation concern by International Union for Nature Conservation (IUCN), karst is no more so than the surrounding areas. Whilst experimental error, including map resolution and the precision and accuracy of point data may have under-estimated the species-richness of Brazilian karst, it likely represents an important biodiversity resource for Brazil and one that can play a valuable role in conservation. Our findings are in sharp contrast to those for Southeast Asia where karst represents a more important source of species-richness and endemism. We also show that although BIEN represents a comprehensive and curated source of point data, discrepancies in the application of names compared to current more comprehensive taxonomic backbones, can have profound impacts on estimates of species-richness, distribution ranges and estimates of endemism.