Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 10(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39057336

RESUMEN

The use of arbuscular mycorrhizal fungi (AMF) offers promising benefits to agriculture in the Amazon regions, where soils are characteristically acidic and nutrient-poor. The purpose of this research was to investigate the potential effects of two recently described species of AMF (Nanoglomus plukenetiae and Rhizoglomus variabile) native to the Peruvian Amazon for improving the plant growth of Plukenetia volubilis (inka nut or sacha inchi) and protecting the roots against soil pathogens. Two assays were simultaneously conducted under greenhouse conditions in Peru. The first focused on evaluating the biofertilizer effect of AMF inoculation, while the second examined the bioprotective effect against the root knot nematode, Meloidogyne incognita. Overall, the results showed that AMF inoculation of P. volubilis seedlings positively improved their development, particularly their biomass, height, and the leaf nutrient contents. When seedlings were exposed to M. incognita, plant growth was also noticeably higher for AMF-inoculated plants than those without AMF inoculation. Nematode reproduction was significantly suppressed by the presence of AMF, in particular R. variabile, and especially when inoculated prior to nematode exposure. The dual AMF inoculation did not necessarily lead to improved crop growth but notably improved P and K leaf contents. The findings provide strong justification for the development of products based on AMF as agro-inputs to catalyze nutrient use and uptake and protect crops against pests and diseases, especially those that are locally adapted to local crops and cropping conditions.

2.
IMA Fungus ; 2(2): 191-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22679604

RESUMEN

Concomitant morphological and molecular analyses have led to major breakthroughs in the taxonomic organization of the phylum Glomeromycota. Fungi in this phylum are known to form arbuscular mycorrhiza, and so far three classes, five orders, 14 families and 29 genera have been described. Sensulato, spore formation in 10 of the arbuscular mycorrhiza-forming genera is exclusively glomoid, one is gigasporoid, seven are scutellosporoid, four are entrophosporoid, two are acaulosporoid, and one is pacisporoid. Spore bimorphism is found in three genera, and one genus is associated with cyanobacteria. Here we present the current classification developed in several recent publications and provide a summary to facilitate the identification of taxa from genus to class level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA