Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;23: 28, 2017. graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1040378

RESUMEN

Background Snakebite treatment requires administration of an appropriate antivenom that should contain antibodies capable of neutralizing the venom. To achieve this goal, antivenom production must start from a suitable immunization protocol and proper venom mixtures. In Brazil, antivenom against South American rattlesnake (Crotalus durissus terrificus) bites is produced by public institutions based on the guidelines defined by the regulatory agency of the Brazilian Ministry of Health, ANVISA. However, each institution uses its own mixture of rattlesnake venom antigens. Previous works have shown that crotamine, a toxin found in Crolatus durissus venom, shows marked individual and populational variation. In addition, serum produced from crotamine-negative venoms fails to recognize this molecule. Methods In this work, we used an antivenomics approach to assess the cross-reactivity of crotalic antivenom manufactured by IVB towards crotamine-negative venom and a mixture of crotamine-negative/crotamine-positive venoms. Results We show that the venom mixture containing 20% crotamine and 57% crotoxin produced a strong immunogenic response in horses. Antivenom raised against this venom mixture reacted with most venom components including crotamine and crotoxin, in contrast to the antivenom raised against crotamine-negative venom. Conclusions These results indicate that venomic databases and antivenomics analysis provide a useful approach for choosing the better venom mixture for antibody production and for the subsequent screening of antivenom cross-reactivity with relevant snake venom components.(AU)


Asunto(s)
Mordeduras y Picaduras , Antivenenos , Crotalus cascavella , Venenos de Crotálidos , Formación de Anticuerpos
2.
Artículo en Inglés | VETINDEX | ID: vti-32806

RESUMEN

Background Snakebite treatment requires administration of an appropriate antivenom that should contain antibodies capable of neutralizing the venom. To achieve this goal, antivenom production must start from a suitable immunization protocol and proper venom mixtures. In Brazil, antivenom against South American rattlesnake (Crotalus durissus terrificus) bites is produced by public institutions based on the guidelines defined by the regulatory agency of the Brazilian Ministry of Health, ANVISA. However, each institution uses its own mixture of rattlesnake venom antigens. Previous works have shown that crotamine, a toxin found in Crolatus durissus venom, shows marked individual and populational variation. In addition, serum produced from crotamine-negative venoms fails to recognize this molecule. Methods In this work, we used an antivenomics approach to assess the cross-reactivity of crotalic antivenom manufactured by IVB towards crotamine-negative venom and a mixture of crotamine-negative/crotamine-positive venoms. Results We show that the venom mixture containing 20% crotamine and 57% crotoxin produced a strong immunogenic response in horses. Antivenom raised against this venom mixture reacted with most venom components including crotamine and crotoxin, in contrast to the antivenom raised against crotamine-negative venom. Conclusions These results indicate that venomic databases and antivenomics analysis provide a useful approach for choosing the better venom mixture for antibody production and for the subsequent screening of antivenom cross-reactivity with relevant snake venom components.(AU)


Asunto(s)
Mordeduras y Picaduras , Antivenenos , Crotalus cascavella , Venenos de Crotálidos , Formación de Anticuerpos
3.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;232017.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484733

RESUMEN

Abstract Background Snakebite treatment requires administration of an appropriate antivenom that should contain antibodies capable of neutralizing the venom. To achieve this goal, antivenom production must start from a suitable immunization protocol and proper venom mixtures. In Brazil, antivenom against South American rattlesnake (Crotalus durissus terrificus) bites is produced by public institutions based on the guidelines defined by the regulatory agency of the Brazilian Ministry of Health, ANVISA. However, each institution uses its own mixture of rattlesnake venom antigens. Previous works have shown that crotamine, a toxin found in Crolatus durissus venom, shows marked individual and populational variation. In addition, serum produced from crotamine-negative venoms fails to recognize this molecule. Methods In this work, we used an antivenomics approach to assess the cross-reactivity of crotalic antivenom manufactured by IVB towards crotamine-negative venom and a mixture of crotamine-negative/crotamine-positive venoms. Results We show that the venom mixture containing 20% crotamine and 57% crotoxin produced a strong immunogenic response in horses. Antivenom raised against this venom mixture reacted with most venom components including crotamine and crotoxin, in contrast to the antivenom raised against crotamine-negative venom. Conclusions These results indicate that venomic databases and antivenomics analysis provide a useful approach for choosing the better venom mixture for antibody production and for the subsequent screening of antivenom cross-reactivity with relevant snake venom components.

4.
Artículo en Portugués | LILACS-Express | VETINDEX | ID: biblio-1483598

RESUMEN

In May 1987, a female of Bothrops jararaca (Wied, 1824), from Carazinho, Rio Grande do Sul (RS), Brazil, was placed in the same vivarium with a male of Bothrops neuwiedi Wagler, 1824 coming from Guaíba, RS. There, they stayed for aproximately ten months. In March 1988, it was observed a delivery of five live and two still born, among them six presented morphologic characteristics of B. neuwiedi and one of B. jararaca. After the female died, in April 1988, through necropsy, two fetusus were found, one near the cloaca and, both identified as B. neuwiedi. The morphologic analysis and the origin of the progenitors suggest the hypothesis that the litter was resulted of cross-breeding.

5.
Artículo en Portugués | LILACS-Express | VETINDEX | ID: biblio-1483494

RESUMEN

The reproduction of Bothrops jararaca (Wied, 1824) in captivity in ordened to determine the intercourse period, births, number of neonates, proportion of males and females per litter were performed between 1989 and 1999. Fifty eight females were observed, 16 intercourses in captivity, 45 females arrived already fertilized from nature and 53 litters, resulting on the birth of 426 live neonates, 67 infertile egg masses, 18 stillborn neonates and 4 abnormal neonates. The intercourse period was from february to december and the births happened between february and may. From the two gestacional periods observed, the shortest one was 152 days and the longest 239. The average amount of live neonates per litter was 8,04. Among 323 neonates, 47,68% were males and 52,32% were females. During the first year of life, 75,71% of the females and 71,54% of the males died, and 2,31% of the females and 0,81% of the males reached the fifth year of life.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA