Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 254(Pt 3): 127651, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37949265

RESUMEN

Four new nitrogen-containing heterocyclic derivatives (acridine, quinoline, indole, pyridine) were synthesized and their biological properties were evaluated. The compounds showed affinity for DNA and HSA, with CAIC and CAAC displaying higher binding constants (Kb) of 9.54 × 104 and 1.06 × 106, respectively. The fluorescence quenching assay (Ksv) revealed suppression values ranging from 0.34 to 0.64 × 103 M-1 for ethidium bromide (EB) and 0.1 to 0.34 × 103 M-1 for acridine orange (AO). Molecular docking confirmed the competition of the derivatives with intercalation probes at the same binding site. At 10 µM concentrations, the derivatives inhibited topoisomerase IIα activity. In the antiproliferative assays, the compounds demonstrated activity against MCF-7 and T47-D tumor cells and nonhemolytic profile. Regarding toxicity, no acute effects were observed in the embryos. However, some compounds caused enzymatic and cardiac changes, particularly the CAIC, which increased SOD activity and altered heart rate compared to the control. These findings suggest potential antitumor action of the derivatives and indicate that substituting the acridine core with different cores does not interfere with their interaction and topoisomerase inhibition. Further investigations are required to assess possible toxicological effects, including reactive oxygen species generation.


Asunto(s)
Antineoplásicos , Inhibidores de Topoisomerasa , Inhibidores de Topoisomerasa/farmacología , Inhibidores de Topoisomerasa/química , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Antineoplásicos/química , ADN/química , Sustancias Intercalantes/farmacología , Acridinas/farmacología , Acridinas/química , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular
2.
Int J Biol Macromol ; 234: 123606, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36773880

RESUMEN

In this work we will discuss the antiproliferative evaluation and the possible mechanisms of action of indole-thiosemicarbazone compounds LTs with anti-inflammatory activity, previously described in the literature. In this perspective, some analyzes were carried out, such as the study of binding to human serum albumin (HSA) and to biological targets: DNA and human topoisomerase IIα (topo). Antiproliferative study was performed with DU-145, Jukart, MCF-7 and T-47D tumor lines and J774A.1, besides HepG2 macrophages and hemolytic activity. In the HSA interaction tests, the highest binding constant was 3.70 × 106 M-1, referring to LT89 and in the fluorescence, most compounds, except for LT76 and LT87, promoted fluorescent suppression with the largest Stern-Volmer constant for the LT88 3.55 × 104. In the antiproliferative assay with DU-145 and Jurkat strains, compounds LT76 (0.98 ± 0.10/1.23 ± 0.32 µM), LT77 (0.94 ± 0.05/1.18 ± 0.08 µM) and LT87 (0.94 ± 0.12/0.84 ± 0.09 µM) stood out, due to their IC50 values mentioned above. With the MCF-7 and T-47D cell lines, the lowest IC50 was presented by LT81 with values of 0.74 ± 0.12 µM and 0.68 ± 0.10 µM, respectively, followed by the compounds LT76 and LT87. As well as the positive control amsacrine, the compounds LT76, LT81 and LT87 were able to inhibit the enzymatic action of human Topoisomerase IIα.


Asunto(s)
Antineoplásicos , Tiosemicarbazonas , Humanos , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Relación Estructura-Actividad , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Línea Celular Tumoral , Inhibidores de Topoisomerasa II/farmacología , ADN/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Indoles/farmacología , Indoles/química , Proliferación Celular
3.
Int J Biol Macromol ; 192: 126-137, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34562539

RESUMEN

This work aimed to develop a simple and low-cost method to obtain human serum albumin (HSA) and its consequent application for in vitro drug interaction assays. The HSA was purified by classic principles of plasma precipitation and thermocoagulation, using a multiple-stage fractionation. The quality of the final product was assessed by electrophoresis, protein dosage by the Lowry method and the pharmacopeial thermal stability. At the end, an isotonic solution of HSA with a total protein concentration of 2.7 mg·mL-1 was obtained, which was visualized as a single band corresponding to the molecular weight of 66 kDa. After the thermal stability test, there was no indication of turbidity or color change of the solution. Finally, the HSA was useful for interaction assays with indole-thiazole and indole-thiazolidinone derivatives through UV-vis absorption and fluorescence spectroscopic studies, as well as by docking molecular analysis. Derivatives quenched the intrinsic fluorescence of HSA, disrupted the tryptophan residues microenvironment, and probably bind at Sudlow's site I. Therefore, the simplified methodology developed in this work proved to be effective in obtaining HSA that can be applied to research goals including drug interaction assays.


Asunto(s)
Indoles/química , Albúmina Sérica Humana/química , Tiazoles/química , Sitios de Unión , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Espectrometría de Fluorescencia , Termodinámica
4.
Int J Biol Macromol ; 170: 622-635, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33359805

RESUMEN

In this study, we report the synthesis of eight novel indole-thiazole and indole-thiazolidinone derivatives, as well as their ability to interact with DNA, analysed through the UV-vis absorption, fluorescence, circular dichroism (CD), viscosity techniques and molecular docking. The ctDNA interaction analysis demonstrated different spectroscopic effects and the affinity constants (Kb) calculated by the UV-vis absorption method were between 2.08 × 105 and 6.99 × 106 M-1, whereas in the fluorescence suppression constants (Ksv) ranged between 0.38 and 0.77 × 104 M-1 and 0.60-7.59 × 104 M-1 using Ethidium Bromide (EB) and 4',6-Diamidino-2-phenylindole (DAPI) as fluorescent probes, respectively. Most derivatives did not alter significantly the secondary structure of the ctDNA according to the CD results. None of the compounds was able to change the relative viscosity of the ctDNA. These results prove that compounds interact with ctDNA via groove binding, which was confirmed by A-T rich oligonucleotide sequence assay with compound JF-252, suggesting the importance of both the phenyl ring coupled to C-4 thiazole ring and the bromo-unsubstituted indole nucleus.


Asunto(s)
ADN/química , Indoles/química , Tiazoles/química , Dicroismo Circular/métodos , Etidio/química , Colorantes Fluorescentes/química , Simulación del Acoplamiento Molecular/métodos , Espectrometría de Fluorescencia/métodos , Termodinámica
5.
Bioorg Med Chem ; 28(23): 115757, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32992245

RESUMEN

Urgent treatments, in any modality, to fight SARS-CoV-2 infections are desired by society in general, by health professionals, by Estate-leaders and, mainly, by the scientific community, because one thing is certain amidst the numerous uncertainties regarding COVID-19: knowledge is the means to discover or to produce an effective treatment against this global disease. Scientists from several areas in the world are still committed to this mission, as shown by the accelerated scientific production in the first half of 2020 with over 25,000 published articles related to the new coronavirus. Three great lines of publications related to COVID-19 were identified for building this article: The first refers to knowledge production concerning the virus and pathophysiology of COVID-19; the second regards efforts to produce vaccines against SARS-CoV-2 at a speed without precedent in the history of science; the third comprehends the attempts to find a marketed drug that can be used to treat COVID-19 by drug repurposing. In this review, the drugs that have been repurposed so far are grouped according to their chemical class. Their structures will be presented to provide better understanding of their structural similarities and possible correlations with mechanisms of actions. This can help identifying anti-SARS-CoV-2 promising therapeutic agents.


Asunto(s)
Antivirales/uso terapéutico , Vacunas contra la COVID-19/inmunología , COVID-19/terapia , Reposicionamiento de Medicamentos , SARS-CoV-2/efectos de los fármacos , Antivirales/química , COVID-19/inmunología , Humanos , SARS-CoV-2/inmunología
6.
Int J Biol Macromol ; 138: 582-589, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31323270

RESUMEN

In the present study, acridine-thiosemicarbazones (ATD) derivatives were tested for their interaction properties with BSA through UV-Vis absorption and fluorescence spectroscopic studies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated after the derivatives were added to the BSA. Values for the binding constant (Kb) ranged from 1.62 × 104 to 8.71 × 105 M-1 and quenching constant (KSV) from 3.46 × 102 to 7.83 × 103 M-1 indicating a good affinity to BSA protein. Complementary, two compounds were selected to assess their inhibition activity against topoisomerase IIα enzyme, of which derivative 3a presented the best result. Moreover, to evaluate protein-ligand interactions, as well as the antitopoisomerase potential of these compounds, tests of molecular modeling were performed between all compounds using the albumin and Topoisomerase IIα/DNA complex. Finally, in silico studies showed that all derivatives used in this research displayed good oral bioavailability potential.


Asunto(s)
Acridinas/química , Albúmina Sérica Bovina/química , Tiosemicarbazonas/química , Inhibidores de Topoisomerasa/química , Inhibidores de Topoisomerasa/farmacología , Técnicas de Química Sintética , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/metabolismo , Activación Enzimática/efectos de los fármacos , Humanos , Modelos Moleculares , Conformación Molecular , Unión Proteica , Albúmina Sérica Bovina/metabolismo , Análisis Espectral , Relación Estructura-Actividad , Inhibidores de Topoisomerasa/síntesis química , Inhibidores de Topoisomerasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA