Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Metab ; 6(8): 1479-1491, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048800

RESUMEN

Primary mitochondrial diseases (PMDs) are associated with pediatric neurological disorders and are traditionally related to oxidative phosphorylation system (OXPHOS) defects in neurons. Interestingly, both PMD mouse models and patients with PMD show gliosis, and pharmacological depletion of microglia, the innate immune cells of the brain, ameliorates multiple symptoms in a mouse model. Given that microglia activation correlates with the expression of OXPHOS genes, we studied whether OXPHOS deficits in microglia may contribute to PMDs. We first observed that the metabolic rewiring associated with microglia stimulation in vitro (via IL-33 or TAU treatment) was partially changed by complex I (CI) inhibition (via rotenone treatment). In vivo, we generated a mouse model deficient for CI activity in microglia (MGcCI). MGcCI microglia showed metabolic rewiring and gradual transcriptional activation, which led to hypertrophy and dysfunction in juvenile (1-month-old) and adult (3-month-old) stages, respectively. MGcCI mice presented widespread reactive astrocytes, a decrease of synaptic markers accompanied by an increased number of parvalbumin neurons, a behavioral deficit characterized by prolonged periods of immobility, loss of weight and premature death that was partially rescued by pharmacologic depletion of microglia. Our data demonstrate that microglia development depends on mitochondrial CI and suggest a direct microglial contribution to PMDs.


Asunto(s)
Complejo I de Transporte de Electrón , Microglía , Enfermedades Mitocondriales , Animales , Microglía/metabolismo , Ratones , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/etiología , Fosforilación Oxidativa , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuroglía/metabolismo , Modelos Animales de Enfermedad , Astrocitos/metabolismo , Gliosis/metabolismo , Gliosis/patología , Encéfalo/metabolismo , Encéfalo/patología
2.
Cells Dev ; 174: 203841, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37060947

RESUMEN

In the adult rodent brain, neural stem cells (NSCs) reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the hippocampus. In these areas, NSCs and their progeny integrate intrinsic signals and extrinsic cues provided by their microenvironment that control their behavior. The vasculature in the SVZ and SGZ, and the choroid plexus (ChP) in the SVZ, have emerged as critical compartments of the neurogenic niches as they provide a rich repertoire of cues to regulate NSC quiescence, proliferation, self-renewal and differentiation. Physical contact between NSCs and blood vessels is also a feature within the niches and supports different processes such as quiescence, migration and vesicle transport. In this review, we provide a description of the brain and choroid plexus vasculature in both stem cell niches, highlighting the main properties and role of the vasculature in each niche. We also summarize the current understanding of how blood vessel- and ChP-derived signals influence the behavior of NSCs in physiological adulthood, as well as upon aging.


Asunto(s)
Células-Madre Neurales , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Encéfalo , Ventrículos Laterales/fisiología , Diferenciación Celular
3.
Nat Neurosci ; 26(2): 226-238, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36624276

RESUMEN

Vaccines against SARS-CoV-2 have been shown to be safe and effective but their protective efficacy against infection in the brain is yet unclear. Here, in the susceptible transgenic K18-hACE2 mouse model of severe coronavirus disease 2019 (COVID-19), we report a spatiotemporal description of SARS-CoV-2 infection and replication through the brain. SARS-CoV-2 brain replication occurs primarily in neurons, leading to neuronal loss, signs of glial activation and vascular damage in mice infected with SARS-CoV-2. One or two doses of a modified vaccinia virus Ankara (MVA) vector expressing the SARS-CoV-2 spike (S) protein (MVA-CoV2-S) conferred full protection against SARS-CoV-2 cerebral infection, preventing virus replication in all areas of the brain and its associated damage. This protection was maintained even after SARS-CoV-2 reinfection. These findings further support the use of MVA-CoV2-S as a promising vaccine candidate against SARS-CoV-2/COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ratones , Animales , Humanos , Ratones Transgénicos , Vacunas contra la COVID-19 , Encéfalo
4.
Nat Commun ; 12(1): 3098, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035282

RESUMEN

The human Alzheimer's disease (AD) brain accumulates angiogenic markers but paradoxically, the cerebral microvasculature is reduced around Aß plaques. Here we demonstrate that angiogenesis is started near Aß plaques in both AD mouse models and human AD samples. However, endothelial cells express the molecular signature of non-productive angiogenesis (NPA) and accumulate, around Aß plaques, a tip cell marker and IB4 reactive vascular anomalies with reduced NOTCH activity. Notably, NPA induction by endothelial loss of presenilin, whose mutations cause familial AD and which activity has been shown to decrease with age, produced a similar vascular phenotype in the absence of Aß pathology. We also show that Aß plaque-associated NPA locally disassembles blood vessels, leaving behind vascular scars, and that microglial phagocytosis contributes to the local loss of endothelial cells. These results define the role of NPA and microglia in local blood vessel disassembly and highlight the vascular component of presenilin loss of function in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Vasos Sanguíneos/metabolismo , Encéfalo/metabolismo , Neovascularización Patológica/genética , Placa Amiloide/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Vasos Sanguíneos/patología , Encéfalo/irrigación sanguínea , Encéfalo/patología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neovascularización Patológica/metabolismo , Placa Amiloide/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
5.
Nat Aging ; 1(4): 385-399, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-37117599

RESUMEN

Genetic Alzheimer's disease (AD) risk factors associate with reduced defensive amyloid ß plaque-associated microglia (AßAM), but the contribution of modifiable AD risk factors to microglial dysfunction is unknown. In AD mouse models, we observe concomitant activation of the hypoxia-inducible factor 1 (HIF1) pathway and transcription of mitochondrial-related genes in AßAM, and elongation of mitochondria, a cellular response to maintain aerobic respiration under low nutrient and oxygen conditions. Overactivation of HIF1 induces microglial quiescence in cellulo, with lower mitochondrial respiration and proliferation. In vivo, overstabilization of HIF1, either genetically or by exposure to systemic hypoxia, reduces AßAM clustering and proliferation and increases Aß neuropathology. In the human AD hippocampus, upregulation of HIF1α and HIF1 target genes correlates with reduced Aß plaque microglial coverage and an increase of Aß plaque-associated neuropathology. Thus, hypoxia (a modifiable AD risk factor) hijacks microglial mitochondrial metabolism and converges with genetic susceptibility to cause AD microglial dysfunction.


Asunto(s)
Enfermedad de Alzheimer , Hipoxia de la Célula , Factor 1 Inducible por Hipoxia , Microglía , Mitocondrias , Enfermedad de Alzheimer/fisiopatología , Mitocondrias/metabolismo , Microglía/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Péptidos beta-Amiloides/metabolismo , Hipocampo , Factores de Riesgo , Animales , Ratones , Humanos , Línea Celular , Fosforilación Oxidativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA