Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Vet Res ; 17(1): 138, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33794882

RESUMEN

BACKGROUND: Intrasynovial deep digital flexor tendon (DDFT) injuries occur frequently and are often implicated in cases of navicular disease with poor outcomes and reinjuries. Cell-based approaches to tendon healing are gaining traction in veterinary medicine and ultimately may contribute to improved DDFT healing in horses. However, a better understanding of the innate cellular characteristics of equine DDFT is necessary for developing improved therapeutic strategies. Additionally, fibrocartilaginous, intrasynovial tendons like the DDFT are common sites of injury and share a poor prognosis across species, offering translational applications of this research. The objective of this study is to isolate and characterize tendon-derived cells (TDC) from intrasynovial DDFT harvested from within the equine forelimb podotrochlear bursa. TDC from the fibrocartilaginous and tendinous zones are separately isolated and assessed. Flow cytometry is performed for mesenchymal stem cell (MSC) surface markers (CD 29, CD 44, CD 90). Basal tenogenic, osteogenic and chondrogenic markers are assessed via quantitative real time-PCR, and standard trilineage differentiation is performed with third passage TDC from the fibrocartilaginous (fTDC) and tendinous (tTDC) zones of DDFT. RESULTS: Low-density plating isolated homogenous TDC populations from both zones. During monolayer passage, both TDC subpopulations exhibited clonogenicity, high in vitro proliferation rate, and fibroblast-like morphology. fTDC and tTDC were positive for MSC surface markers CD90 and CD29 and negative for CD44. There were no significant differences in basal tenogenic, osteogenic or chondrogenic marker expression between zones. While fTDC were largely restricted to chondrogenic differentiation, tTDC underwent osteogenic and chondrogenic differentiation. Both TDC subpopulations displayed weak adipogenic differentiation potentials. CONCLUSIONS: TDC at the level of the podotrochlear bursa, that potentially could be targeted for enhancing DDFT injury healing in horses were identified and characterized. Pending further investigation, promoting chondrogenic properties in cells administered exogenously into the intrasynovial space may be beneficial for intrasynovial tendon regeneration.


Asunto(s)
Caballos , Células Madre Mesenquimatosas/citología , Tendones/citología , Adipogénesis , Animales , Diferenciación Celular , Células Cultivadas , Condrogénesis , Citometría de Flujo/veterinaria , Miembro Anterior , Células Madre Mesenquimatosas/metabolismo , Osteogénesis
2.
Front Vet Sci ; 7: 486, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32851046

RESUMEN

Primary deep digital flexor tendon (DDFT) pathologies and those accompanying degenerative changes of navicular bone fibrocartilage are major causes of lameness associated with navicular disease. Intrasynovial corticosteroids are mainstay in the treatment due to the anti-inflammatory effects, but their effect on DDFT cell biosynthesis are unknown. The objective of this in-vitro study was to investigate the effects of methylprednisolone acetate (MPA) on cells isolated from the dorsal fibrocartilaginous region of forelimb DDFTs (DDFT-derived cells) of 5 horses (aged 11-17 years). Non-adherent aggregate cultures were established from third passage cells over a 72 to 96-h duration prior to treating with medium containing 0 (control), 0.05 and 0.5 mg/mL MPA for 24 h. Tendon and cartilage extracellular matrix (ECM) related gene expression, cell aggregate and culture medium GAG contents, culture medium collagen and MMP-3 and-13 concentrations were measured. After 24 h of treatment, only the higher MPA concentration (0.5 mg/mL) significantly down-regulated tendon ECM related genes; whereas, both MPA doses significantly down-regulated cartilage ECM related genes. MPA treatment did not affect the total GAG content of DDFT-derived cells or total GAG, soluble collagen and MMP-3 and-13 contents in culture medium compared to untreated controls. Future studies to determine the response of DDFT-derived cells with longer exposure times to corticosteroids and in the presence of inflammatory cytokines are necessary. These results are a first step in assessing the effects of intrasynovial medications on equine DDFT, for which currently no information exists.

3.
Stem Cells Int ; 2019: 1602751, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31949435

RESUMEN

There is increased incidence of tendon disorders and decreased tendon healing capacity in people with diabetes mellitus (DM). Recent studies have also suggested pathological ossification in repair tendon of people with DM. Therefore, the objective of this study is to investigate the effects of insulin supplementation, an important pathophysiologic stimulus of DM, on tendon progenitor cell (TPC) proliferation and in vitro osteogenic capacity. Passage 3 TPCs were isolated from collagenase-digested, equine superficial digital flexor tendons. TPC proliferation was measured via MTT assay after 3 days of monolayer culture in medium supplemented with 0, 0.007, 0.07, and 0.7 nM insulin. In vitro osteogenic capacity of TPCs (Alizarin Red staining, osteogenic mRNA expression, and alkaline phosphatase bioactivity) was assessed with 0, 0.07, and 0.7 nM insulin-supplemented osteogenic induction medium. Insulin (0.7 nM) significantly increased TPC proliferation after 3 days of monolayer culture. Alizarin Red staining of insulin-treated TPC osteogenic cultures demonstrated robust cell aggregation and mineralized matrix secretion, in a dose-dependent manner. Runx2, alkaline phosphatase, and Osteonectin mRNA and alkaline phosphatase bioactivity of insulin-treated TPC cultures were significantly higher at day 14 of osteogenesis compared to untreated controls. Addition of picropodophyllin (PPP), a selective IGF-I receptor inhibitor, mitigated the increased osteogenic capacity of TPCs, indicating that IGF-I signaling plays an important role. Our findings indicate that hyperinsulinemia may alter TPC phenotype and subsequently impact the quality of repair tendon tissue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA