Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37665324

RESUMEN

Crowding occurs when the presence of nearby features causes highly visible objects to become unrecognizable. Although crowding has implications for many everyday tasks and the tremendous amounts of research reflect its importance, surprisingly little is known about how depth affects crowding. Most available studies show that stereoscopic disparity reduces crowding, indicating that crowding may be relatively unimportant in three-dimensional environments. However, most previous studies tested only small stereoscopic differences in depth in which disparity, defocus blur, and accommodation are inconsistent with the real world. Using a novel multi-depth plane display, this study investigated how large (0.54-2.25 diopters), real differences in target-flanker depth, representative of those experienced between many objects in the real world, affect crowding. Our findings show that large differences in target-flanker depth increased crowding in the majority of observers, contrary to previous work showing reduced crowding in the presence of small depth differences. Furthermore, when the target was at fixation depth, crowding was generally more pronounced when the flankers were behind the target as opposed to in front of it. However, when the flankers were at fixation depth, crowding was generally more pronounced when the target was behind the flankers. These findings suggest that crowding from clutter outside the limits of binocular fusion can still have a significant impact on object recognition and visual perception in the peripheral field.


While human eyesight is clearest at the point where the gaze is focused, peripheral vision makes objects to the side visible. This ability to detect movement and objects in a wider field of vision helps people to have a greater awareness of their surroundings. However, it is more difficult to identify an object using peripheral vision when it is surrounded by other items. This phenomenon is known as crowding and can affect many aspects of daily life, such as driving or spotting a friend in a crowd. In our three-dimensional world, peripheral objects are often at different distances. This variation in depth could influence the effect of crowding, yet little is known about its effect. While previous research has investigated the effect of small differences in depth on crowding, the studies did not replicate real-world conditions. To replicate depths that are likely to be encountered in the real world, Smithers et al. created a display using multiple screens positioned 0.4, 1.26 and 4 meters from the viewer. Images were displayed on the screens and researchers measured how well study participants could identify a target image when it was surrounded by similar, nearby images displayed closer or further away than the target. The experiments showed that most viewers are less able to recognize a target object when there are surrounding items and this effect is worsened when the items are separated from the object by large differences in depth. The findings show that instead of diminishing the effect of crowding ­ as suggested by previous studies with small depth differences ­ large depth differences that more closely recreate those encountered in the real world can amplify the effect of crowding. This greater understanding of how humans process objects in three-dimensional environments could help to better estimate the impact of crowding on people with eye and neurological disorders. In turn, the information could be used to design environments that are easier for such individuals to navigate.


Asunto(s)
Técnicas Histológicas , Percepción Visual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA