Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Adv Res ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128701

RESUMEN

INTRODUCTION: The efficiency of zinc oxide (ZnO) nanoparticles for environmental decontamination is limited by their reliance on ultraviolet (UV) light and rapid charge carrier recombination. Carbon doping has been proposed to address these challenges by potentially enhancing visible light absorption and charge separation. OBJECTIVES: This study aims to introduce a novel, single-step synthesis method for carbon-doped ZnO (C-Z) nanoparticles, leveraging the decomposition of zinc nitrate hexahydrate and furfural under a nitrogen atmosphere to improve photocatalytic activity under visible light. METHODS: A series of C-Z variants (C-Z-1 to C-Z-5) and an undoped sample (ZnO-0) were synthesized. The influence of furfural on the synthesis process and doping mechanism was analyzed by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV-visible diffuse reflectance spectroscopy (DRS). RESULTS: XPS confirmed the integration of carbon within the ZnO matrix, and XRD indicated increased lattice dimensions owing to doping. DRS revealed bandgap narrowing, suggesting enhanced charge separation. Among the variants, C-Z-3 significantly outperformed the others, showing a 12-fold increase in the photocatalytic degradation rate of Rhodamine B compared to undoped ZnO. CONCLUSION: The developed single-step synthesis method for C-Z nanoparticles represents a major advancement in materials engineering for ecological applications. The enhanced photocatalytic activity under visible light, as demonstrated by C-Z-3, underscores the potential of these nanoparticles for environmental decontamination.

2.
Nanomaterials (Basel) ; 13(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37947681

RESUMEN

The polyacrylamide/gelatin-iron lanthanum oxide (P-G-ILO nanohybrid) was fabricated by the free radical grafting co-polymerization technique in the presence of N,N-methylenebisacrylamide (MBA) as cross linker and ammonium persulfate (APS) as initiator. The P-G-ILO nanohybrid was characterized by the various spectroscopic and microscopic techniques that provided the information regarding the crystalline behavior, surface area, and pore size. The response surface methodology was utilized for the statistical observation of diclofenac (DF) adsorption from the wastewater. The adsorption capacity (qe, mg/g) of P-G-ILO nanohybrid was higher (254, 256, and 258 mg/g) than the ILO nanoparticle (239, 234, and 233 mg/g). The Freundlich isotherm model was the best fitted, as it gives the higher values of correlation coefficient (R2 = 0.982, 0.991 and 0.981) and lower value of standard error of estimate (SEE = 6.30, 4.42 and 6.52), which suggested the multilayered adsorption of DF over the designed P-G-ILO nanohybrid and followed the pseudo second order kinetic model (PSO kinetic model) adsorption. The thermodynamic study reveals that adsorption was spontaneous and endothermic in nature and randomness onto the P-G-ILO nanohybrids surface increases after the DF adsorption. The mechanism of adsorption of DF demonstrated that the adsorption was mainly due to the electrostatic interaction, hydrogen bonding, and dipole interaction. P-G-ILO nanohybrid was reusable for up to five adsorption/desorption cycles.

3.
Molecules ; 28(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37959663

RESUMEN

Efficient compositions for the selective detection of ethanol gas and the removal of organic contaminants were realized by codoping of (Gd, Nb) and (Gd, Mo) ions into TiO2. TiO2, Ti0.96Gd0.01Nb0.03O2, and Ti0.96Gd0.01Mo0.03O2 samples were prepared by a coprecipitation method. For all compositions, a crystalline anatase phase of TiO2 was detected. Compared to pure TiO2, the absorption edges of Ti0.96Gd0.01Nb0.03O2 and Ti0.96Gd0.01Mo0.03O2 samples were red-shifted, further broadening towards visible light. The morphological studies demonstrate that the grains of TiO2 were more refined after (Gd, Nb) and (Gd, Mo) codoping. The photocatalytic efficiency of the Ti0.96Gd0.01Mo0.03O2 catalyst for degrading 20 mg/L reactive yellow 145, brilliant green, and amoxicillin was 98, 95, and 93% in 90 min, respectively. The reusability experiments indicate that the Ti0.96Gd0.01Mo0.03O2 catalyst had high stability during reuse. The high photocatalytic activity of the Ti0.96Gd0.01Mo0.03O2 catalyst was correlated to the broad visible-light absorption and effective separation of electron-hole pairs by Gd3+ and Mo6+ cations. The gas sensing characteristic is reflected by the high sensitivity of the Ti0.96Gd0.01Nb0.03O2 sensor to ethanol gas in the presence of different gases at 275 °C. The obtained results indicated that the (Gd, Mo) mixture could more effectively induce the photocatalytic properties of TiO2 while (Gd, Nb) dopants were the best for reinforcing its sensing characteristics.

4.
RSC Adv ; 13(49): 34598-34609, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38024985

RESUMEN

The development of recyclable photocatalysts with high activity and stability has piqued the interest of researchers in the field of wastewater treatment. In this study, an ultrasonic probe approach was used to immerse a sequence of heterojunctions formed by metal-organic frameworks (UiO-66) and different amounts of molybdenum disulfide quantum dots (MoS2QDs), resulting in a highly recyclable MoS2QDs@UiO-66 photocatalyst. Multiple advanced techniques, such as XPS, XRD, TEM, XRF, and UV-vis spectrophotometry, were used to characterize and confirm the successful preparation of UIO-66 impregnated with MoS2QDs. The results indicated that the best heterostructure catalyst exhibited superior efficiency in the photocatalytic degradation of methylene blue (MB) in water, achieving approximately 99% removal within 30 minutes under simulated sunlight, while approximately 97% removal under visible light. The outstanding photocatalytic performance is predominantly attributed to the photoinduced separation of carriers in this heterostructure system. This study proposes a unique, simple, and low-cost method for improving the degradation performance of organic contaminants in water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA