Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 344: 140325, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37797896

RESUMEN

In this work, g-C3N5/CdS dendrite/AgNPs nanocomposite was synthesized using a mixed method consisting of hydrothermal, ultrasonic and chemistry reduction with sodium borohydride. The characterization of the as-prepared nanocomposite was done using infrared spectroscopy, X-ray, scanning electron microscopy, transmission electron microscopy, BET, and DRS methods was performed. The DRS results showed that the g-C3N5/CdS dendrite/AgNPs nanocomposite nanocomposite has a band gap of 1.08 eV. This band gap indicates the good capability of this nanocomposite as a photocatalyst. Accordingly, the photocatalytic degradation of chlorpyrifos (CPS) in was performed in an aqueous solution of the synthesized nanocomposite. The results showed that almost 95.3% of this poison, a concentration of 50 mg L-1 was degraded in the presence of 0.05 g L-1 of nanocomposite at pH = 5 in a 60 min. Hydroxide radicals and holes play a significant role in the photocatalytic process. The reusability of the nanocomposite with excellent performance in the degradation of photocatalytic toxins caused by the reduction in the electron-hole recombination and the high surface area of the nanocomposite are among the unique features of this work.


Asunto(s)
Cloropirifos , Nanopartículas del Metal , Nanocompuestos , Plata/química , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Catálisis , Nanocompuestos/química
2.
Polymers (Basel) ; 15(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36679283

RESUMEN

The substantial fluorescence (FL) capabilities, exceptional photophysical qualities, and long-term colloidal stability of quantum dots (QDs) have aroused a lot of interest in recent years. QDs have strong and wide optical absorption, good chemical stability, quick transfer characteristics, and facile customization. Adding polymeric materials to QDs improves their effectiveness. QDs/polymer hybrids have implications in sensors, photonics, transistors, pharmaceutical transport, and other domains. There are a great number of review articles available online discussing the creation of CDs and their many uses. There are certain review papers that can be found online that describe the creation of composites as well as their many different uses. For QDs/polymer hybrids, the emission spectra were nearly equal to those of QDs, indicating that the optical characteristics of QDs were substantially preserved. They performed well as biochemical and biophysical detectors/sensors for a variety of targets because of their FL quenching efficacy. This article concludes by discussing the difficulties that still need to be overcome as well as the outlook for the future of QDs/polymer hybrids.

3.
Chemosphere ; 274: 129765, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33548649

RESUMEN

Antibiotic pollutants are a serious and growing threat to human health and the environment that efficient measures must be taken to eliminate them. Here, we report the facile fabrication of porous hollow Ag/Ag2S/Ag3PO4 heterostrucutres for efficient photocatalytic degradation of tetracycline under simulated sunlight irradiation. The morphology manipulation and hetero-nanocomposites construction through a coprecipitation-refluxing approach were applied to enhance the photocatalytic performance of the Ag/Ag2S/Ag3PO4 products. The photodegradation outcomes indicated that the heterojunction Ag/Ag2S/Ag3PO4 photocatalyst with a suitable band gap energy of 2.17 eV, has better degradation performance (∼95%) than individual Ag2S and Ag3PO4 structures after 120 min of simulated sunlight irradiation, even after five recycles. The good photocatalytic activity of Ag/Ag2S/Ag3PO4 nanocomposites could be mainly attributed to the unique hierarchical architectures, promoted visible-light harvesting, reduced a recombination and boosted separation of electron-hole pairs originated from the as-formed heterojunctions. Moreover, we proposed a photocatalytic degradation mechanism based on the radical scavenging results, which disclosed that the •O2- and •OH species perform essential tasks for the photodegradation of antibiotics by Ag/Ag2S/Ag3PO4 nanocomposites.


Asunto(s)
Antibacterianos , Nanocompuestos , Catálisis , Humanos , Fosfatos , Porosidad , Plata , Compuestos de Plata , Luz Solar
4.
RSC Adv ; 11(14): 8228-8238, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35423347

RESUMEN

In this work, new double perovskite Tb2ZnMnO6 nanoparticles were successfully synthesized by a sol-gel auto combustion method. To synthesize these nanoparticles, three known sugars, lactose, fructose, and maltose, and liquorice powder, which contains quantities of sugar and other organic compounds, were used as fuel. Images obtained from Scanning Electron Microscopy (SEM) analysis implied that maltose-based nanoparticles are homogenous and less in particle size. Further, different maltose ratios were applied to get the best size and morphology. The optimum sample was used to continue the other analysis to check other features of the nanoparticles. Also, the optimum sample was used for the removal of dye contamination under the photocatalytic process. Photocatalytic tests were performed in neutral and alkaline pH conditions under UV-light irradiation. It has been found that the decolorization percent for methyl orange was about 35% and for methyl violet about 55% at neutral pH. Also, this value for methyl violet was about 90% at pH = 8. The results obtained from the study of photocatalytic properties introduce these nanoparticles as a desirable option for removing dye contaminants from aqueous media.

5.
RSC Adv ; 11(19): 11500-11512, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35423650

RESUMEN

The present work reports the sonochemical synthesis of DBNO NC (dysprosium nickelate nanocomposite) using metal nitrates and core almond as a capping agent. In addition, the effects of the power of ultrasound irradiation were investigated. The BaDy2NiO5/Dy2O3 and BaDy2NiO5/NiO nanocomposites were synthesized with sonication powers of 50 and 30 W, respectively. The agglomerated nanoparticles were obtained using different sonication powers, including 15, 30, and 50 W. The results showed that upon increasing the sonication power, the particle size decreased. After characterization, the optical, electrical, magnetic, and photocatalytic properties of the NC were studied. The nanocomposites showed an antiferromagnetic behavior. In this study, the photocatalytic degradations of two dyes, AR14 and AB92, were investigated in the presence of DBNO NC. Furthermore, the effects of the amount of photocatalyst, the concentration of the dye solution, the type of organic dye, and light irradiation on the photocatalytic activity of the nanocomposite were studied. The results showed that with an increasing amount of catalyst and decreasing concentration of dye, the photocatalytic activity of the nanocomposite was increased. This activity for the degradation of AR14 is higher than that of AB92. Both AR14 and AB92 dyes show higher photocatalytic degradation under UV irradiation than under Vis irradiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA