Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 30(10): 335, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283541

RESUMEN

CONTEXT: In this comparative study of the adsorption of L-phenylalanine (L-Phe) on two modified low-activated carbons (ACK and ACZ) at four temperatures (293-313 K), steric and energetic characteristics of adsorption were investigated. An advanced statistical physics multilayer model involving single-layer and double-layer adsorption scenarios was developed to interpret the L-Phe adsorption phenomenon. Modeling results indicate that two and three L-Phe layers were arranged depending on the tested adsorption systems. The estimated number of L-Phe molecules per leading adsorption site varied from 1.71 to 2.09 and from 1.76 to 1.86 for systems L-Phe-ACK and L-Phe-ACZ, respectively. The results show that a multimolecular adsorption mechanism might connect this amino acid molecule on ACZ and ACK surfaces in a non-parallel location. These parameters changed as follows, according to the adsorbed quantity at saturation analysis: Qasat (L-Phe-ACK) ˃ Qasat (L-Phe-ACZ). This indicates that ACK material was more efficient and valuable for L-Phe adsorption than ACZ. It was also shown that the adsorption capacity decreases as the temperature increases, proving the exothermicity of the adsorption process. This analytical substantiation is confirmed by calculating the binding energies, suggesting the occurrence of physical bonds between L-Phe amino acid molecules and ACK/ACZ binding sites and among L-Phe-L-Phe molecules. Pore size distribution was interpreted and calculated by applying the Kelvin theory to data from single adsorption isotherms. All used temperatures depicted a distribution of pores below 2 nm. The docking analysis involving L-Phe and the ACZ and ACK adsorbents reveal a significant resemblance in how receptors detect ligands. Consequently, the findings from the docking process confirm that the calculated binding affinities fall within the spectrum of adsorption energy. METHODS: This study analyzed the adsorption capacity of the L-Phe through a model proposed by statistical physics formalism. Molecular docking was used to determine the various types of interactions between the two activated carbons. Two aspects, including orientation of L-Phe on the site, number of molecules per site n, interaction energy, density of receptor site, and adsorption capacity, were discussed to elucidate the influence of activation on the two adsorbents.

2.
Biomedicines ; 11(7)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37509664

RESUMEN

The monkeypox virus (MPXV) is an enveloped, double-stranded DNA virus belonging to the genus Orthopox viruses. In recent years, the virus has spread to countries where it was previously unknown, turning it into a worldwide emergency for public health. This study employs a structural-based drug design approach to identify potential inhibitors for the core cysteine proteinase of MPXV. During the simulations, the study identified two potential inhibitors, compound CHEMBL32926 and compound CHEMBL4861364, demonstrating strong binding affinities and drug-like properties. Their docking scores with the target protein were -10.7 and -10.9 kcal/mol, respectively. This study used ensemble-based protein-ligand docking to account for the binding site conformation variability. By examining how the identified inhibitors interact with the protein, this research sheds light on the workings of the inhibitors' mechanisms of action. Molecular dynamic simulations of protein-ligand complexes showed fluctuations from the initial docked pose, but they confirmed their binding throughout the simulation. The MMGBSA binding free energy calculations for CHEMBL32926 showed a binding free energy range of (-9.25 to -9.65) kcal/mol, while CHEMBL4861364 exhibited a range of (-41.66 to -31.47) kcal/mol. Later, analogues were searched for these compounds with 70% similarity criteria, and their IC50 was predicted using pre-trained machine learning models. This resulted in identifying two similar compounds for each hit with comparable binding affinity for cysteine proteinase. This study's structure-based drug design approach provides a promising strategy for identifying new drugs for treating MPXV infections.

3.
Healthcare (Basel) ; 11(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37297716

RESUMEN

BACKGROUND: Antibiotic (AB) resistance is caused partly by overuse, varies by region, and is influenced by prescriber perspectives. This study sought to determine physicians' knowledge and attitudes toward AB prescribing, particularly in the Hail region of Saudi Arabia. METHODS: An interdisciplinary team created and validated an electronic questionnaire via the test-retest method that measured reliability and consistency. The 19 questions covered the following subjects: demographic information (7), experience with AB resistance in daily work (3), AB prescribing behavior (2), communication with patients regarding AB resistance (3), and prescribing practices (4). The revised questionnaire was prepared and distributed to physicians in the Hail region via multiple electronic communication channels. Inferences were drawn based on descriptive statistics and multivariate regression analysis. RESULTS: The questionnaire responses of 202 participants were eligible for analysis. A total of 70 (34.80%) participants were general practitioners, 78 (38.12%) were engaged in daily work that was only mildly related to AB resistance, and 25 (12.37%) performed work that was substantially related to AB resistance. A total of 88 (43.56%) physicians believed that prescribing behavior contributed to the emergence of AB resistance, whereas 68 (33.66%) did not. Regarding exposure, 51 (25.24%) physicians reported encountering instances of AB resistance monthly, whereas 104 (51.48%) reported seeing cases of AB resistance very rarely. In terms of prescribing practices, 99 (49.0%) physicians prescribed ABs to patients daily and 73 (36.13%) weekly. Regarding AB-resistance-related communication with patients, 73 (36.13%) physicians frequently discussed AB resistance with patients suffering from infections, whereas 13 (6.4%) never discussed it with patients. CONCLUSION: General practitioners in the Hail region exhibited comprehensive awareness of the elements that contribute to AB resistance but only rarely communicated about the issue with their patients, presuming the latter to be oblivious to the science behind AB resistance. Our findings suggest that the features underlying practitioners' AB prescribing behavior could be a powerful strategy for lowering AB resistance.

4.
J Infect Public Health ; 16(6): 928-937, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37086552

RESUMEN

The unmet medical need for drug-resistant tuberculosis (DRTB) is a significant concern. Accordingly, identifying new drug targets for tuberculosis (TB) treatment and developing new therapies based on these drug targets is one of the strategies to tackle DRTB. QcrB is an innovative drug target to create treatments for DRTB. This article highlights QcrB inhibitors and their therapeutic compositions for treating TB. The literature for this article was gathered from PubMed and free patent databases utilizing different keywords related to QcrB inhibitor-based inventions. The data was collected from the conceptualization of telacebec (2010) QcrB to December 2022. A little interesting and encouraging research has been performed on QcrB inhibitors. Telacebec and TB47 are established QcrB inhibitors in the clinical trial. The inventive QcrB inhibitor-based drug combinations can potentially handle DRTB and reduce the TB therapy duration. The authors anticipate great opportunities in fostering QcrB inhibitor-based patentable pharmaceutical inventions against TB. Drug repurposing can be a promising strategy to get safe and effective QcrB inhibitors. However, developing drug resistance, drug tolerance, and selectivity of QcrB inhibitors for Mtb will be the main challenges in developing effective QcrB inhibitors. In conclusion, QcrB is a promising drug target for developing effective treatments for active, latent, and drug-resistant TB. Many inventive and patentable combinations and compositions of QcrB inhibitors with other anti-TB drugs are anticipated as future treatments for TB.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Tuberculosis/tratamiento farmacológico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
5.
J Infect Public Health ; 16(4): 554-572, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36812878

RESUMEN

BACKGROUND: The emergence of various drug-resistant strains of Mycobacterium tuberculosis compelled medicinal chemists to expedite the discovery of novel, safer alternatives to present regimens. Decaprenylphosphoryl-ß-d-ribose 2'-epimerase (DprE1), an essential component of arabinogalactan biosynthesis, has been considered a novel target for developing new inhibitors against Tuberculosis. We aimed to discover DprE1 inhibitors utilizing the drug repurposing approach. METHODS: A structure-based virtual screening of FDA and world-approved drugs database was carried out, and initially, 30 molecules were selected based on their binding affinity. These compounds were further analyzed by molecular docking with extra-precision mode, MMGBSA binding free energy estimation, and prediction of ADMET profile. RESULTS: Based on the docking results and MMGBSA energy values- ZINC000006716957, ZINC000011677911, and ZINC000022448696 were identified to be the top three hit molecules with good binding interactions inside the active site of DprE1. These hit molecules were subjected to molecular dynamics (MD) simulation for a period of 100 ns to study the dynamic nature of the binding complex. MD results were in accordance with molecular docking and MMGBSA analysis showing protein-ligand contacts with key amino acid residues of DprE1. CONCLUSION: Based on their stability throughout the 100 ns simulation, ZINC000011677911 was the best in silico hit with an already known safety profile. This molecule could lead to future optimization and development of new DprE1 inhibitors.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Humanos , Antituberculosos/farmacología , Simulación del Acoplamiento Molecular , Reposicionamiento de Medicamentos , Simulación de Dinámica Molecular , Computadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA