Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(17): e36773, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39281484

RESUMEN

In cases of brain tumors, some brain cells experience abnormal and rapid growth, leading to the development of tumors. Brain tumors represent a significant source of illness affecting the brain. Magnetic Resonance Imaging (MRI) stands as a well-established and coherent diagnostic method for brain cancer detection. However, the resulting MRI scans produce a vast number of images, which require thorough examination by radiologists. Manual assessment of these images consumes considerable time and may result in inaccuracies in cancer detection. Recently, deep learning has emerged as a reliable tool for decision-making tasks across various domains, including finance, medicine, cybersecurity, agriculture, and forensics. In the context of brain cancer diagnosis, Deep Learning and Machine Learning algorithms applied to MRI data enable rapid prognosis. However, achieving higher accuracy is crucial for providing appropriate treatment to patients and facilitating prompt decision-making by radiologists. To address this, we propose the use of Convolutional Neural Networks (CNN) for brain tumor detection. Our approach utilizes a dataset consisting of two classes: three representing different tumor types and one representing non-tumor samples. We present a model that leverages pre-trained CNNs to categorize brain cancer cases. Additionally, data augmentation techniques are employed to augment the dataset size. The effectiveness of our proposed CNN model is evaluated through various metrics, including validation loss, confusion matrix, and overall loss. The proposed approach employing ResNet50 and EfficientNet demonstrated higher levels of accuracy, precision, and recall in detecting brain tumors.

2.
Diagnostics (Basel) ; 13(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37761306

RESUMEN

Colon cancer is the third most common cancer type worldwide in 2020, almost two million cases were diagnosed. As a result, providing new, highly accurate techniques in detecting colon cancer leads to early and successful treatment of this disease. This paper aims to propose a heterogenic stacking deep learning model to predict colon cancer. Stacking deep learning is integrated with pretrained convolutional neural network (CNN) models with a metalearner to enhance colon cancer prediction performance. The proposed model is compared with VGG16, InceptionV3, Resnet50, and DenseNet121 using different evaluation metrics. Furthermore, the proposed models are evaluated using the LC25000 and WCE binary and muticlassified colon cancer image datasets. The results show that the stacking models recorded the highest performance for the two datasets. For the LC25000 dataset, the stacked model recorded the highest performance accuracy, recall, precision, and F1 score (100). For the WCE colon image dataset, the stacked model recorded the highest performance accuracy, recall, precision, and F1 score (98). Stacking-SVM achieved the highest performed compared to existing models (VGG16, InceptionV3, Resnet50, and DenseNet121) because it combines the output of multiple single models and trains and evaluates a metalearner using the output to produce better predictive results than any single model. Black-box deep learning models are represented using explainable AI (XAI).

3.
Front Physiol ; 13: 1085240, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36601350

RESUMEN

Diabetes mellitus is a metabolic syndrome affecting millions of people worldwide. Every year, the rate of occurrence rises drastically. Diabetes-related problems across several vital organs of the body can be fatal if left untreated. Diabetes must be detected early to receive proper treatment, preventing the condition from escalating to severe problems. Tremendous health sciences and biotechnology advancements have resulted in massive data that generated massive Electronic Health Records and clinical information. The exponential increase of electronically gathered information has resulted in more complicated, accurate prediction models that can be updated continuously using machine learning techniques. This research mainly emphasizes discovering the best ensemble model for predicting diabetes. A new multistage ensemble model is proposed for diabetes prediction. In this model, accuracy is predicated on the Pima Indian Diabetes dataset. The accuracy of the proposed ensemble model is compared with the existing machine learning model, and the experimental results demonstrate the performance of the proposed model in terms of higher Precision, f-measure, Recall, and area under the curve.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA