Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 14: 1370059, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737901

RESUMEN

Objectives: This manuscript presents a bibliometric and visualization analysis of Total Body Irradiation (TBI) research, aiming to elucidate trends, gaps, and future directions in the field. This study aims to provide a comprehensive overview of the global research landscape of TBI, highlighting its key contributions, evolving trends, and potential areas for future exploration. Methods: The data for this study were extracted from the Web of Science Core Collection (WoSCC), encompassing articles published up to May 2023. The analysis included original studies, abstracts, and review articles focusing on TBI-related research. Bibliometric indicators such as total publications (TP), total citations (TC), and citations per publication (C/P) were utilized to assess the research output and impact. Visualization tools such as VOS Viewer were employed for thematic mapping and to illustrate international collaboration networks. Results: The analysis revealed a substantial body of literature, with 7,315 articles published by 2,650 institutions involving, 13,979 authors. Full-length articles were predominant, highlighting their central role in the dissemination of TBI research. The authorship pattern indicated a diverse range of scholarly influences, with both established and emerging researchers contributing significantly. The USA led in global contributions, with significant international collaborations observed. Recent research trends have focused on refining TBI treatment techniques, investigating long-term patient effects, and advancing dosimetry and biomarker studies for radiation exposure assessments. Conclusions: TBI research exhibits a dynamic and multifaceted landscape, driven by global collaboration and innovation. It highlights the clinical challenges of TBI, such as its adverse effects and the need for tailored treatments in pediatric cases. Crucially, the study also acknowledges the fundamental science underpinning TBI, including its effects on inflammatory and apoptotic pathways, DNA damage, and the varied sensitivity of cells and tissues. This dual focus enhances our understanding of TBI, guiding future research toward innovative solutions and comprehensive care.

2.
Cureus ; 15(10): e47047, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38021774

RESUMEN

Background Deep inspiration breath-hold (DIBH) has been established as a standard technique to reduce cardiac dose. The part of the heart exposed to radiation can be significantly decreased using the DIBH technique during tangential left-sided breast cancer (LSBC) irradiation. Aim The objective of this study was to investigate the intra-fraction breath-hold stability and inter-fraction consistency of patient breath-hold against the threshold as a function of air volumes in the setting of active breathing coordinator (ABC)-based DIBH (ABC-DIBH) treatment to LSBC. Methods A total of 34 patients treated with external beam radiation therapy (EBRT) to the left breast using the ABC-DIBH device were included. The frequency of breath-holds per fraction and the entire course of treatment along with the total treatment time was evaluated for all patients. A prescription dose of either 200 cGy (conventional) or 267 cGy (hypofractionation) was administered during 649 fractions, resulting in a total of 4,601 breath-hold measurements being evaluated. The amplitude of deviation in terms of air volumes between the baseline threshold and the patient-specific measurement (during each breath-hold) per fraction was used to define the DIBH stability. Likewise, the consistency of the breathing amplitudes was used to define the compliance of patient breath-holds throughout the entire treatment period. Positional accuracy was evaluated using orthogonal (portal) images. Results The average number of breath-holds measured over the entire course of treatment for each patient was 144 inspirations (58-351). Similarly, the average number of breath-holds for each fraction during the course of treatment was 11 inspirations (7-21), which included setup imaging and treatment. The total number of breath-holds reduced significantly (p-value < 0.05) with hypofractionation (104 inspirations; range 58-170) as compared to conventional fractionation (145 inspirations; 58-351). The average breath-hold threshold in terms of air volume was 1.41 L (0.6-2.1 L) for all patients. The total treatment time reduced significantly after the third fraction (p-value < 0.05). The average deviation between the measured and baseline threshold breath-holds during the course of treatment was 0.5 L/sec (0.12-1.32 L/sec). The consistency of the breathing amplitudes were maintained within ±0.05 L during the entire treatment for all patients. The average translational shifts measured during setup were 0.28 cm ± 0.3 cm, 0.38 cm ± 0.4 cm, and 0.21 cm ± 0.3 cm in the lateral, longitudinal, and vertical directions, respectively. Conclusion The study has demonstrated the variations in intra-fraction breath-hold stability and inter-fraction breath-hold consistency in terms of air volumes for patients who were treated for LSBC. The frequency of breath-holds was observed to be higher with increased total treatment time for the first few fractions and reduced over the course of treatment.

3.
Cureus ; 15(8): e43500, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37719625

RESUMEN

Stereotactic ablative radiotherapy (SABR) is a possible treatment option for patients who develop recurrence within or at the edge of a previously irradiated volume. Robotic stereotactic radiotherapy is the result of technological advances in robotic precision, real-time imaging, non-invasive, highly customizable treatment plan, and delivery with sub-millimeter accuracy. This article reviews the radiobiologic, technical, and clinical aspects of robotic-based SABR re-irradiation for various anatomical sites. An extensive literature search was performed to identify articles on the utilization of robotic stereotactic radiotherapy for patients undergoing re-irradiation. The reported prescription dose and fractionation data along with outcomes such as overall survival, local control rates, and toxicities were qualitatively reviewed. The findings consistently indicate that re-irradiation using robotic SABR provides encouraging survival rates with minimal toxicity in the clinical setting of various anatomical sites delivered using locally non-invasive means where other treatment options are scarce.

4.
Cureus ; 15(5): e39600, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37384098

RESUMEN

The objective of this research is to conduct a comprehensive bibliometric analysis using the Web of Science Core Collection (WoSCC) to examine the current research topics and trends pertaining to stereotactic-based re-irradiation. A bibliometric search was conducted for re-irradiation-related literature published in English from the WoSCC database from 1991 to 2022, using VOSviewer to visualize the results. The extracted information comprises the publication year, overall citation count, average citation rate, keywords, and research domains. We conducted a literature review to identify trends in research on re-irradiation. A total of 19,891 citations were found in 924 qualifying papers that came from 48 different nations. The number of publications and citations has grown steadily since 2008 with the highest number of publications in the year 2018. Similarly, a substantial increase in the number of citations has increased since 2004 and the citation growth rate has been positive between 2004 and 2019 with a peak in 2013. The top authorship patterns were six authors (111 publications and 2498 citations), whereas the highest number of citations per publication was attained with an authorship pattern of 17 authors (C/P = 41.1). The collaboration patterns analysis showed that the largest proportion of publications emanated from the United States with 363 publications (30.9%), followed by Germany with 102 publications (8.7%), and France with 92 publications (7.8%). The majority of the analyzed studies were focused on the brain (30%), head and neck (13%), lung (12%), and spine (10%) and there have been emerging studies on the use of re-irradiation for lung, prostate, pelvic and liver utilizing stereotactic radiotherapy. The main areas of interest have changed over time and are now based on a multidisciplinary approach that integrates advanced imaging techniques, stereotactic treatment delivery, the toxicity of organs at risk, quality of life, and treatment outcomes.

5.
J Appl Clin Med Phys ; 22(11): 29-40, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34592787

RESUMEN

PURPOSE: Minimum segment width (MSW) plays a fundamental role in the shaping of optimized apertures and creation of segments of varying sizes and shapes in complex radiotherapy treatment plans. The purpose of this work was to study the effect of MSW on dose distribution in patients planned with VMAT for various treatment sites using dose volume histogram (DVH) analysis. MATERIALS AND METHODS: For the validation of optimum MSW, 125 clinical treatment plans were evaluated. Five groups were identified (brain, head and neck, thorax, pelvis, and extremity), and five cases were chosen from each group. For each case, five plans were created with different MSW (0.5, 0.8, 1.0, 1.25, and 1.5 cm). The quality of treatment plans created using different MSW were compared using dosimetric indicators such as target coverage (D98 -dose to 98% of the planning target volume (PTV), maximum dose (D2 -maximum dose to 2% of the PTV), monitor units (MU), and DVH parameters related to organs at risk (OAR). The effect of the MSW on delivery accuracy was quantitatively analyzed using the measured fluence utilizing ionization chamber-based transmission detector and model-based dose verification system. Traditional global gamma analysis (2%, 2 mm) and dose volume information was gathered for the PTV and organs at risk and compared for different MSWs. RESULTS: A total of 125 plans were created and compared across five groups. In terms of treatment plan quality, the plans using MSW of 0.5 cm was found to be superior in all groups. PTV coverage (D98 ) decreased significantly (p < 0.05) as the MSW increased. Similarly, the maximum dose (D2 ) was found to be increased significantly (p < 0.05) as the MSW increased from 0.5 cm, with MSW of 1.5 cm being the least in terms of plan quality for both PTVs and OARs. In terms of plan deliverability using DVH analysis, treatment planning system (TPS) compared to measured fluence, VMAT plans produced with MSW of 0.5 cm showed a better dosimetric index and a smaller deviation for both PTVs and OARs. The deliverability of the plans deteriorated as the MSW increased. CONCLUSION: Dose volume histogram (DVH) analysis demonstrated that treatment plans with minimal MSW showed better plan quality and deliverability and provided clinical relevance as compared to gamma index analysis.


Asunto(s)
Radioterapia de Intensidad Modulada , Humanos , Órganos en Riesgo , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA