Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 147: 228-237, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28846927

RESUMEN

Former mine exploitations entail a serious threat to surrounding ecosystems as after closure of mining activities their unmanaged wastes can be a continuous source of toxic trace elements. Quite often these mine sites are found within agricultural farming areas, involving serious hazards as regards product (feed/food) quality. In this work a grazing land impacted by the abandoned mine exploitation of an arsenical deposit was studied so as to evaluate the fate of arsenic (As) and other trace elements and the potential risks involved. With this aim, profile soil samples (0-50cm) and pasture plant species (Agrostis truncatula, Holcus annus and Leontodon longirostris) were collected at different distances (0-100m) from the mine waste dump and analyzed for their trace element content and distribution. Likewise, plant trace element accumulation from impacted grazing soils and plant trace element translocation were assessed. The exposure of livestock grazing animals to As was also evaluated, establishing its acceptability regarding food safety and animal health. International soil guideline values for As in grazing land soils (50mgkg-1) resulted greatly exceeded (up to about 20-fold) in the studied mining-affected soils. Moreover, As showed a high mobilization potential under circumstances such as phosphate application or establishment of reducing conditions. Arsenic exhibited relatively high translocation factor (TF) values (up to 0.32-0.89) in pasture plant species, reaching unsafe concentrations in their above-ground tissues (up to 32.9, 16.9 and 9.0mgkg-1 in Agrostis truncatula, Leontodon longirostris and Holcus annus, respectively). Such concentrations represent an elevated risk of As transfer to the high trophic-chain levels as established by international legislation. The limited fraction of arsenite found in plant roots should play an important role in the relatively high As root-to-shoot translocation shown by these plant species. Both soil ingestion and pasture intake resulted important entrance pathways of As into livestock animals, showing quite close contribution levels. The cow acceptable daily intake (ADI) of As regarding food safety was surpassed in some locations of the study area when the species Agrostis truncatula was considered as the only pasture feed. Restrictions in the grazing use of lands with considerable As contents where this plant was the predominant pasture species should be established in order to preserve food quality. Therefore, the exposure of livestock animals to As via both soil ingestion and pasture consumption should be taken into account to establish the suitability of mining-impacted areas for gazing.


Asunto(s)
Arsénico/análisis , Minería , Poaceae/metabolismo , Contaminantes del Suelo/análisis , Suelo/química , Alimentación Animal/análisis , Animales , Arsénico/metabolismo , Bovinos , Inocuidad de los Alimentos , Herbivoria , Ganado , Contaminantes del Suelo/metabolismo
2.
J Environ Manage ; 92(4): 1268-76, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21215510

RESUMEN

An extensive and remote gold mining region located in the East of Venezuela has been studied with the aim of assessing the distribution and mobility of mercury in soil and the level of Hg pollution at artisanal gold mining sites. To do so, soils and pond sediments were sampled at sites not subject to anthropological influence, as well as in areas affected by gold mining activities. Total Hg in regionally distributed soils ranged between 0.02 mg kg(-1) and 0.40 mg kg(-1), with a median value of 0.11 mg kg(-1), which is slightly higher than soil Hg worldwide, possibly indicating long-term atmospheric input or more recent local atmospheric input, in addition to minor lithogenic sources. A reference Hg concentration of 0.33 mg kg(-1) is proposed for the detection of mining affected soils in this region. Critical total Hg concentrations were found in the surrounding soils of pollutant sources, such as milling-amalgamation sites, where soil Hg contents ranged from 0.16 mg kg(-1) to 542 mg kg(-1) with an average of 26.89 mg kg(-1), which also showed high levels of elemental Hg, but quite low soluble+exchangeable Hg fraction (0.02-4.90 mg kg(-1)), suggesting low Hg soil mobility and bioavailability, as confirmed by soil column leaching tests. The vertical distribution of Hg through the soil profiles, as well as variations in soil Hg contents with distance from the pollution source, and Hg in pond mining sediments were also analysed.


Asunto(s)
Mercurio/análisis , Contaminantes del Suelo/análisis , Sedimentos Geológicos/química , Oro , Minería , Ríos , Venezuela
3.
Sci Total Environ ; 408(19): 4194-201, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20538319

RESUMEN

High levels of total and bioavailable As in soils in mining areas may lead to the potential contamination of surface water and groundwater, being toxic to human, plants, and animals. The soils in the studied area (Province of Salamanca, Spain) recorded a total As concentration that varied from 5.5mg/kg to 150mg/kg, and water-soluble As ranged from 0.004mg/kg to 0.107mg/kg, often exceeding the guideline limits for agricultural soil (50mg/kg total As, 0.04mg/kg water-soluble As). The range of As concentration in pond water was <0.001microg/l-60microg/l, with 40% of samples exceeding the maximum permissible level (10microg/l) for drinking water. Estimated bioavailable As in soil varied from 0.045mg/kg to 0.760mg/kg, around six times higher than water-soluble As fraction, which may pose a high potential risk in regard to its entry into food chain. Soil column leaching tests show an As potential mobility constant threatening water contamination by continuous leaching. The vertical distribution of As through soil profiles suggests a deposition mechanism of this element on the top-soils that involves the wind or water transport of mine tailings. A similar vertical distribution of As and organic matter (OM) contents in soil profiles, as well as, significant correlations between As concentrations and OM and N contents, suggests that type and content of soil OM are major factors for determining the content, distribution, and mobilization of As in the soil. Due to the low supergenic mobility of this element in mining environments, the soil pollution degree in the studied area is moderate, in spite of the elevated As contents in mine tailings.


Asunto(s)
Arsénico/análisis , Monitoreo del Ambiente , Minería , Contaminantes del Suelo/análisis , Cinética , Modelos Químicos , Medición de Riesgo , España , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA