Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Immunol Lett ; 244: 19-27, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35259423

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by impaired communication, impaired reciprocal social interaction, restricted sociability deficits, and the presence of stereotyped patterns of behaviors. Immune dysregulation has been suggested to play a possible etiological role in ASD. Recent studies have demonstrated that exposure to methylmercury chloride (MeHgCl) leads to abnormal gait, motor deficits, impaired hearing, and memory deficits; however, its effects on behavioral and immunological responses have not been adequately investigated in ASD. In this study, we investigated the effects of MeHgCl exposure on marble burying, self-grooming behaviors, sociability tests, and locomotor activities in BTBR T+ Itpr3tf/J (BTBR) mice. We also explored the possible molecular mechanism underlying the effects of MeHgCl administration on IFN-γ-, T-bet-, IL-9-, and IL-17A-producing CD4+, CXCR5+, CXCR6+, and CCR9+ cells isolated from spleens. Furthermore, the effects of MeHgCl exposure on the mRNA expression and levels of pro-inflammatory cytokines in the brain tissue and serum samples were also assessed. Our results demonstrated that MeHgCl exposure caused a significant increase in marble burying, self-grooming behaviors and a decrease in social interactions and adverse effects on locomotor activity in BTBR mice. MeHgCl exposure also significantly increased the production of CD4+IFN-γ+, CD4+T-bet+, CCR9+T-bet+, CXCR5+IL-9+, CD4+IL-9+, CXCR6+IL-17A+, and CD4+IL-17A+ cells in the spleen. Furthermore, MeHgCl exposure increased mRNA and protein levels of pro-inflammatory cytokines in the brain and serum respectively in BTBR mice. In conclusion, MeHgCl administration aggravated existing behavioral and immune abnormalities in BTBR mice.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Animales , Trastorno del Espectro Autista/etiología , Trastorno Autístico/inducido químicamente , Trastorno Autístico/genética , Carbonato de Calcio/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Interleucina-17/metabolismo , Interleucina-9 , Compuestos de Metilmercurio , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , ARN Mensajero/metabolismo , Transducción de Señal
2.
Neurotoxicology ; 82: 9-17, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33166615

RESUMEN

Autism spectrum disorder (ASD) is a severe neurodevelopmental disorder characterized by deficits in social interaction, communication, and repetitive behaviors. A key role for immune dysfunction has been suggested in ASD. Recent studies have indicated that inflammatory mediators and Notch-1 signaling may contribute to the development of ASD. Methylmercury chloride (MeHgCl) is an environmental pollutant that primarily affects the central nervous system, causing neurological alterations. Its effects on immunological responses have not been fully investigated in ASD. In this study, we examined the influence of MeHgCl exposure on inflammatory mediators and Notch-1 signaling in BTBR T+ Itpr3tf/J (BTBR) mice, a model of ASD. We examined the effects of MeHgCl on the IL-6-, GM-CSF-, NF-κB p65-, Notch-1-, and IL-27-producing CD14+ and CD40+ cells in the spleen. We assessed the effect of MeHgCl on IL-6, GM-CSF, NF-κB p65, Notch-1, and IL-27 mRNA levels in brain tissue. We also measured IL-6, GM-CSF, and NF-κB p65 protein expression levels in brain tissue. MeHgCl exposure of BTBR mice significantly increased IL-6-, GM-CSF-, NF-κB p65-, and Notch-1-, and decreased IL-27-producing CD14+, and CD40+ cells in the spleen. MeHgCl exposure of BTBR mice upregulated IL-6, GM-CSF, NF-κB p65, and Notch-1, and decreased IL-27 mRNA expression levels in brain tissue. Moreover, MeHgCl resulted in elevated expression of the IL-6, GM-CSF, and NF-κB p65 proteins in brain tissue. Taken together, these results indicate that MeHgCl exposure aggravates proinflammatory mediators and Notch-1 signaling which are associated with imbalance of neuroimmune function in BTBR mice.


Asunto(s)
Receptores de Lipopolisacáridos/metabolismo , Linfocitos/efectos de los fármacos , Compuestos de Metilmercurio/toxicidad , Neuroinmunomodulación/efectos de los fármacos , Receptor Notch3/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Western Blotting , Citometría de Flujo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interleucina-6/metabolismo , Ratones , FN-kappa B/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA