Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 342: 123121, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38086505

RESUMEN

Exposure to atmospheric particulate matter (PM) has been associated with heightened risks of lung cancer, cardiovascular and respiratory diseases. PM exposure also affects the immune system, leading to an increased susceptibility to infections, exacerbating pre-existent inflammatory and allergic lung diseases. Atmospheric PM can primarily impact human health through the generation of reactive oxygen species (ROS) that subsequently induce or exacerbate inflammation. These cytotoxic effects have been related with PM concentration, and its chemical constituents, including metals, solvent extractable organics (e.g., polycyclic aromatic hydrocarbons), and water-soluble ions. Although not receiving much attention, the fine aerosol water-soluble organic matter (WSOM) can account for a substantial portion of the overall fine PM mass and has been shown to present strong oxidative and immunomodulatory effects. Thus, the objective of this review is to provide a comprehensive analysis of the role of the water-soluble fraction of PM, with a specific focus on the contribution of the WSOM component to the cytotoxic properties of atmospheric PM. The chemical properties of the water-soluble PM fraction are briefly discussed, while emphasis is put on how PM size, composition, and temporal variations (e.g., seasonality) can impact the pro-oxidative activity, the modulation of inflammatory response, and the cytotoxicity of the water-soluble PM extracts.


Asunto(s)
Contaminantes Atmosféricos , Humanos , Contaminantes Atmosféricos/análisis , Agua/análisis , Aerosoles y Gotitas Respiratorias , Material Particulado/análisis , Estrés Oxidativo , Aerosoles/análisis , Tamaño de la Partícula
2.
Allergo J Int ; : 1-9, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37359419

RESUMEN

Airborne pollen allergens-a relevant component of bioaerosols and, therefore, of airborne particulate matter-are considered an important metric in air quality assessments. Although the measurement of airborne pollen allergen concentrations in outdoor environments (namely, in urban areas) has been recognized as a key environmental health indicator, no such obligation exists for indoor environments (dwellings or occupational settings). However, people spend most of their daily time (80-90%) indoors, where the majority of their exposure to air pollution, including pollen allergens, occurs. Nonetheless, the relative importance of airborne pollen allergen exposure indoors differs from outdoors because of differences in pollen loads, sources, dispersion, and degree of penetration from the outdoor surroundings, as well as the differences in the allergenic pollen profiles. In this brief review, we mined the literature over the last 10 years to summarize what existing measurements reveal about the relevance of airborne allergenic pollen in indoor environments. The research priorities on this topic are presented, highlighting the challenges and the motivations for obtaining pollen data in built environments which are key to understand the extent and mechanisms of human exposure to airborne pollen allergens. Thus, we provide a comprehensive assessment of the relevance of airborne allergenic pollen in indoor environments, highlighting knowledge gaps and research needs related to their health effects.

3.
Environ Sci Technol ; 54(2): 1082-1091, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31710482

RESUMEN

The impact of inhalable fine particulate matter (PM2.5, aerodynamic diameter <2.5 µm) on public health is of great concern worldwide. Knowledge on their harmful effects are mainly due to studies carried out with whole air particles, with the contribution of their different fractions remaining largely unknown. Herein, a set of urban PM2.5 samples were collected during daytime and nighttime periods in autumn and spring, aiming to address the seasonal and day-night variability of water-soluble organic matter (WSOM) composition. In vitro analysis of the oxidative and pro-inflammatory potential of WSOM samples was carried out in both acute (24 h) and chronic (3 weeks) exposure setups using Raw264.7 macrophages as cell model. Findings revealed that the structural composition of WSOM samples differs between seasons and in a day-night cycle. Cell exposure resulted in an increase in the transcription of the cytoprotective Hmox1 and pro-inflammatory genes Il1b and Nos2, leading to a moderate pro-inflammatory status. These macrophages showed an impaired capacity to subsequently respond to a strong pro-inflammatory stimulus such as bacterial lipopolysaccharide, which may implicate a compromised capacity to manage harmful pathogens. Further investigation on aerosol WSOM could help to constrain the mechanisms of WSOM-induced respiratory diseases and contribute to PM2.5 regulations.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles , Monitoreo del Ambiente , Tamaño de la Partícula , Material Particulado , Estaciones del Año , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA