Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 140: 55-67, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31082659

RESUMEN

Plants express various antimicrobial peptides including thionins to protect themselves against pathogens. It was recently found that, in addition to four thionin genes, Arabidopsis contains 67 thionin-like (ThiL) genes including six pseudogenes. It is known that thionins have antimicrobial activity and are part of the plant defense system, however, nothing is known about ThiL genes. In this study, we present a bioinformatic analysis of the (ThiL) gene family in Arabidopsis. We identified 15 different motifs which positioned the ThiL peptides in four groups. A comparison of amino acid sequences showed that the ThiL peptides are actually more similar to the acidic domain of thionin proproteins than to the thionin domain. We selected 10 ThiL genes to study the expression and possible function in the Arabidopsis plant. RT-PCR and promoter:GUS fusions showed that most genes were expressed at a very low level but in several organs and at different developmental stages. Some genes were also expressed in syncytia induced by the beet cyst nematode Heterodera schachti in roots while others were downregulated in syncytia. Some overexpression lines supported lower number of nematodes that developed on the roots after inoculation. Two of the genes resulted in a strong hypersensitive response when infiltrated into leaves of Nicotiana benthamiana. These results indicate that ThiL genes might be involved in the response to biotic stress. ThiL genes have been expanded in the Brassicales and specifically the Brassicaceae. The most extreme example is the CRP2460 subfamily that contains 28 very closely related genes from Arabidopsis which are mostly the result of tandem duplications.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/parasitología , Proteínas de Arabidopsis/genética , Biología Computacional/métodos , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Regiones Promotoras Genéticas/genética , Tioninas/genética , Tioninas/metabolismo
2.
Plant Mol Biol Report ; 31: 1529-1538, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24415845

RESUMEN

Production of recombinant proteins in plants is of increasing importance for practical applications. However, the production of stable transformed transgenic plants is a lengthy procedure. Transient expression, on the other hand, can deliver recombinant proteins within a week, and many viral vectors have been constructed for that purpose. Each of them is reported to be highly efficient, robust and cost-effective. Here, a variety of expression vectors which were designed for transient and stable plant transformation, including pPZP3425, pPZP5025, pPZPTRBO, pJLTRBO, pEAQ-HT and pBY030-2R, was compared for the expression of green fluorescent protein and ß-glucuronidase in Nicotiana benthamiana by Agrobacterium-mediated transient expression. Our results show that pPZPTRBO, pJLTRBO and pEAQ-HT had comparable expression levels without co-infiltration of a RNA-silencing inhibitor. The other vectors, including the non-viral vectors pPZP5025 and pPZP3425, needed co-infiltration of the RNA-silencing inhibitor P19 to give good expression levels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA