Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biomater ; 2024: 9198129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39262654

RESUMEN

A new synthesis of mixed ligand complexes vanadium(III), iron(III), and nickel(II), [M : L1 : L2], where L1 = Schiff base 2-((E)-((4-(((E)-benzylidene)amino)phenyl)imino)methyl)-naphthalene-1-ol (C24H18N2O) as for L2 = AMPY 2-amino-4-methyl pyrimidine (C5H7N3) were prepared in powder and investigated. Element analysis, molar conductivity, FT-IR, UV-vis, and magnetic susceptibility values have been acquired to describe the generated complexes. The values of vanadium(III), iron(III), and nickel(II) compounds are, respectively, 2.88 BM, 5.96 BM, and 2.92 BM, demonstrating that all compounds conform to the recommended octahedral geometry. Thermal gravimetric analysis (TGA) is used to further assess the complexes and establish the temperature stability and degradation of the metal complexes. The calculations abstracted from XRD patterns propose nanosized complexes (average size 29-50 nm). The microstructures of the samples have also been investigated by scanning electron microscopy (SEM). The disc diffusion method was used to assess and analyze the inhibition of the growth of compounds against harmful bacterial and fungal strains. The prepared complexes were tested against three strains of bacteria, one gram-positive strain (Bacillus subtilis), two gram-negative strains (Escherichia coli and Pseudomonas aeruginosa), and one fungus (Aspergillus fumigatus). The complexes inferred antimicrobial activity against the studied organisms. Specifically, vanadium(III) and nickel(II) are more effective than iron(III), making them promising drugs.

2.
Sci Rep ; 14(1): 18706, 2024 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134587

RESUMEN

Marine pollution caused by heavy metals has emerged as a significant environmental concern, garnering increased attention in recent years. The accumulation of heavy metals in the tissues of marine organisms poses substantial threats to both marine ecosystems and human populations that rely on seafood as a primary food source. Fish and crustaceans are effective biomonitors for assessing heavy metal contamination in aquatic environments. In this study, we determined the concentrations of several heavy metals, including cadmium (Cd), lead (Pb), nickel (Ni), mercury (Hg), and tin (Sn), in four fish species (Mugil cephalus, Mugil capito, L. aurata, and Morone labrax) and five crustacean species (S. rivulatus, Cerastoderma glaucum, Paratapes undulatus, R. decussatus, Callinectes sapidus, and Metapenaeus Stebbingi) from Temsah Lake during both winter and summer seasons. To evaluate the potential ecological and health risks associated with consuming these fish and crustacean species, we calculated the metal pollution index (MPI), weekly intake (EWI), target hazard quotient (THQ), and carcinogenic risk (CR) values. The results revealed a noticeable increase in metal levels during the summer compared to winter in the studied samples. Moreover, the concentration of heavy metals in the muscles of the species generally exceeded those in the liver and gills. The MPI values indicated that Morone labrax exhibited the highest values during winter, while L. aurata showed the highest values during summer. Mugil cephalus demonstrated the lowest MPI values in both seasons. The EWI values for the studied metals were found to be lower than the corresponding tolerable weekly intake (TWI) values. Additionally, under average exposure conditions, the THQ and HI data were generally below one for most study species in the area. The calculated CR values for investigated metals in the studied species indicated acceptable carcinogenic risk levels. Therefore, this suggests that consuming studied species within Temsah lake does not present any potential health hazards for consumers.


Asunto(s)
Crustáceos , Monitoreo del Ambiente , Peces , Lagos , Metales Pesados , Contaminantes Químicos del Agua , Animales , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Crustáceos/metabolismo , Medición de Riesgo , Peces/metabolismo , Monitoreo del Ambiente/métodos , Humanos , Estaciones del Año
3.
Forensic Toxicol ; 42(2): 221-231, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38739353

RESUMEN

PURPOSE: Forensic verification of cyanide (CN) poisoning by direct CN analysis in postmortem blood is challenging due to instability of CN in biological samples. CN metabolites, thiocyanate (SCN-) and 2-aminothiazoline-4-carboxylic acid (ATCA), have been proposed as more stable biomarkers, yet it is unclear if either is appropriate for this purpose. In this study, we evaluated the behavior of CN biomarkers in postmortem swine and postmortem blood to determine which serves as the best biomarker of CN exposure. METHODS: CN, SCN-, and ATCA were measured in postmortem swine (N = 8) stored at 4 °C and postmortem blood stored at 25 °C (room temperature, RT) and 37 °C (typical human body temperature, HBT). RESULTS: Following CN poisoning, the concentration of each CN biomarker increased well above the baseline. In postmortem swine, CN concentrations declined rapidly (t1/2 = 34.3 h) versus SCN- (t1/2 = 359 h, 15 days) and ATCA (t1/2 = 544 h, 23 days). CN instability in postmortem blood increased at RT (t1/2 = 10.7 h) and HBT (t1/2 = 6.6 h). SCN- and ATCA were more stable than CN at all storage conditions. In postmortem swine, the t1/2s of SCN- and ATCA were 15 and 23 days, respectively. While both the t1/2s of SCN- and ATCA were relatively lengthy, endogenous levels of SCN- were much more variable than ATCA. CONCLUSION: While there are still questions to be answered, ATCA was the most adept forensic marker of CN poisoning (i.e., ATCA produced the longest half-life, the largest increase above baseline levels, and most stable background concentrations).


Asunto(s)
Biomarcadores , Cianuros , Animales , Cianuros/envenenamiento , Cianuros/sangre , Biomarcadores/sangre , Porcinos , Tiocianatos/envenenamiento , Tiocianatos/sangre , Tiocianatos/metabolismo , Toxicología Forense/métodos , Modelos Animales , Temperatura , Manejo de Especímenes/métodos , Tiazoles
4.
Materials (Basel) ; 17(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38730938

RESUMEN

A serious risk that harms the safe use of water and affects aquatic ecosystems is water pollution. This occurs when the water's natural equilibrium is disrupted by an excessive amount of substances, both naturally occurring and as a byproduct of human activities, that have varied degrees of toxicity. Radiation from Cs isotopes, which are common components of radioactive waste and are known for their long half-lives (30 years), which are longer than the natural decay processes, is a major source of contamination. Adsorption is a commonly used technique for reducing this kind of contamination, and zeolite chabazite has been chosen as the best adsorbent for cesium in this particular situation. The purpose of this research is to investigate a composite material based on magnesium phosphate cement (MPC). Magnesium oxide (MgO), potassium dihydrogen phosphate (KH2PO4), and properly selected retarders are used to create the MPC. The optimal conditions for this composite material are investigated through the utilization of X-ray diffraction, scanning electron microscopy, BET surface area analysis, and atomic absorption spectroscopy. The principal aim is to enable innovations in the elimination of radioactive waste-contaminated water using effective cesium removal. The most promising results were obtained by using KH2PO4 as an acid, and MgO as a base, and aiming for an M/P ratio of two or four. Furthermore, we chose zeolite chabazite as a crucial component. The best adsorption abilities for Cs were found at Qads = 106.997 mg/g for S2 and Qads = 122.108 mg/g for S1. As a result, zeolite is an eco-friendly material that is a potential usage option, with many benefits, such as low prices, stability, and ease of regeneration and use.

5.
Anal Bioanal Chem ; 415(26): 6595-6609, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37712953

RESUMEN

Cyanide (in the form of cyanide anion (CN-) or hydrogen cyanide (HCN), inclusively represented as CN) can be a rapidly acting and deadly poison, but it is also a common chemical component of a variety of natural and anthropogenic substances. The main mechanism of acute CN toxicity is based on blocking terminal electron transfer by inhibiting cytochrome c oxidase, resulting in cellular hypoxia, cytotoxic anoxia, and potential death. Due to the well-established link between blood CN concentrations and the manifestation of symptoms, the determination of blood concentration of CN, along with the major metabolite, thiocyanate (SCN-), is critical. Because currently there is no method of analysis available for the simultaneous detection of CN and SCN- from blood, a sensitive method for the simultaneous analysis of CN and SCN- from human ante- and postmortem blood via liquid chromatography-tandem MS analysis was developed. For this method, sample preparation for CN involved active microdiffusion with subsequent chemical modification using naphthalene-2,3-dicarboxaldehyde (NDA) and taurine (i.e., the capture solution). Preparation for SCN- was accomplished via protein precipitation and monobromobimane (MBB) modification. The method produced good sensitivity for CN with antemortem limit of detection (LODs) of 219 nM and 605 nM for CN and SCN-, respectively, and postmortem LODs of 352 nM and 509 nM. The dynamic ranges of the method were 5-500 µM and 10-500 µM in ante- and postmortem blood, respectively. In addition, the method produced good accuracy (100 ± 15%) and precision (≤ 15.2% relative standard deviation). The method was able to detect elevated levels of CN and SCN- in both antemortem (N = 5) and postmortem (N = 4) blood samples from CN-exposed swine compared to nonexposed swine.

6.
J Chromatogr A ; 1622: 461102, 2020 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-32389418

RESUMEN

With the advent of highly selective analysis techniques (e.g., liquid chromatography-tandem mass spectrometry), and lower limits of detection requirements, extraction efficiency is arguably the most important property of modern sample preparation techniques. In this study, the extraction efficiency of Ice Concentration Linked with Extractive Stirrer (ICECLES) was compared to Stir Bar Sorptive Extraction (SBSE) and Solid-Phase Microextraction (SPME). A direct comparison of these sample preparation techniques was carried out with analysis via both Liquid Chromatography - Tandem Mass Spectrometry (LC-MS/MS) and Thermal Desorption Gas Chromatography - Mass Spectrometry (TD-GC-MS). ICECLES produced 2x and 7x greater TD-GC-MS signals than SBSE and SPME, respectively. When comparing extraction techniques for a suite of 60 pesticides in drinking water, 32, 25, and 13 pesticides were detected via LC-MS/MS at 0.1 ng/mL by ICECLES, SBSE, and SPME, respectively. Overall, ICECLES consistently produced better extraction efficiencies than the other extraction techniques evaluated.


Asunto(s)
Agua Potable/química , Plaguicidas/análisis , Plaguicidas/aislamiento & purificación , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Hielo , Microextracción en Fase Sólida , Espectrometría de Masas en Tándem
7.
J Chromatogr A ; 1518: 8-14, 2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-28882342

RESUMEN

Worldwide, green tea is one of the most popular beverages. It promotes blood circulation, liver function, and lowers the risk of cancer and cardiovascular diseases. This drink is characterized by the distinctive odors and flavors produced by its constituent compounds, with its value predicated on the amount and type of constituents extracted from the tea leaves during brewing. Ice concentration linked with extractive stirrer (ICECLES) is a novel sample preparation technique, especially applicable for the extraction of relatively polar compounds while retaining excellent extraction efficiencies for non-polar compounds. In this study, ICECLES was used to prepare green tea for analysis of aroma/flavor compounds by gas chromatography-mass spectrometry (GC-MS). ICECLES performed very well, revealing 301 constituents as compared to 245 for SBSE (i.e., 56 more constituents were detected via ICECLES). Moreover, ICECLES produced stronger signal to noise ratios for all except 4 of 301 constituents, with a maximum signal enhancement of 19. Of the constituents which were only detectable using ICECLES, some very important aroma/flavor and/or medicinal compounds were easily identified, including furfural, furfural alcohol, maltol, eugenol, 2-methylpyrazine, phenethyl alcohol, 2,6-dimethoxyphenol, and α-terpineol. Overall, we confirmed that ICECLES sample preparation followed by GC-MS consistently allowed more complete green tea aroma/flavor analysis, especially for relatively polar compounds, some of which are critical for flavor quality.


Asunto(s)
Análisis de los Alimentos/métodos , Té/química , Bebidas/análisis , Monoterpenos Ciclohexánicos , Ciclohexenos/análisis , Cromatografía de Gases y Espectrometría de Masas , Hielo , Monoterpenos/análisis , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA