Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
GM Crops ; 2(1): 66-73, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21844700

RESUMEN

Complex groups of proteins determine the unique functional properties of wheat flour and are sometimes responsible for food intolerances and allergies in individuals that consume wheat products. Transgenic approaches can be used to explore the functions of different flour proteins, but are limited to the few wheat cultivars that can be transformed and also by the lack of detailed information about genes and proteins expressed in grain from those cultivars. The US bread wheat Butte 86 has been extensively characterized and a comprehensive proteome map was developed in which flour proteins were distinguished by mass spectrometry and associated with specific gene sequences. Here, this information has been used to design an RNA interference construct to silence the expression of genes encoding omega gliadins that trigger the food allergy wheat-dependent exercise-induced anaphylaxis (WDEIA). The construct was introduced into immature embryos from Butte 86 using biolistics and bialaphos-resistant plants were regenerated. Stable transformation and inheritance of the transgene were confirmed by PCR. Analysis of proteins in grain from transgenic plants demonstrated that the omega-5 gliadins were either absent or substantially reduced relative to non-transformed controls. The ability to genetically transform Butte 86 makes it possible to alter flour composition in a targeted manner in a commercial US wheat cultivar and should accelerate future research on flour quality and immunogenic potential.


Asunto(s)
Alérgenos/genética , Gliadina/genética , Plantas Modificadas Genéticamente/genética , Triticum/genética , Antígenos de Plantas , Silenciador del Gen , Reacción en Cadena de la Polimerasa , Transformación Genética/genética
2.
Phytochemistry ; 68(3): 327-34, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17157337

RESUMEN

Steroidal glycoalkaloids (SGAs) are potentially harmful specialty metabolites found in Solanaceous plants. Two tri-glycosylated alkaloids, alpha-chaconine and alpha-solanine accumulate in potato tubers. Expressed sequence tags (ESTs) were identified in the available database by searching for protein homology to the Sgt1 (SOLtu:Sgt1) steriodalalkaloid galactosyltransferase. The EST sequence data was used to isolate Sgt3 cDNA sequences by polymerase chain reaction (PCR) from a wounded potato tuber cDNA library. The resulting 1515bp open reading frame of Sgt3, encodes a predicted SGT3 amino acid sequence that is 18 residues longer than, 45% identical to, and 58% homologous to the SGT1 protein. The amino-terminal region of the Sgt3 cDNA was used to create an antisense transgene under control of the granule bound starch synthase, GBSS6, promoter and the ubiquitin, Ubi3, polyadenylation signal. Analysis of SGA metabolites in selected transgenic tubers revealed a dramatic decrease in the accumulation of alpha-chaconine and alpha-solanine. This decrease was compensated by an increase in beta-solanine and beta-chaconine with minor accumulation of alpha-SGAs. These results allowed the identification of the function for SGT3 as the beta-solanine/beta-chaconine rhamnosyl transferase, the terminal step in formation of the potato glycoalkaloid triose side chains.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hexosiltransferasas/metabolismo , Solanum tuberosum/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Cartilla de ADN , ADN Complementario , Genes de Plantas , Hexosiltransferasas/química , Hexosiltransferasas/genética , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Solanum tuberosum/genética , Transgenes
3.
Phytochemistry ; 67(15): 1590-7, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16298403

RESUMEN

To provide tools for breeders to control the steroidal glycoalkaloid (SGA) pathway in potato, we have investigated the steroidal alkaloid glycosyltransferase (Sgt) gene family. The committed step in the SGA pathway is the glycosylation of solanidine by either UDP-glucose or UDP-galactose leading to alpha-chaconine or alpha-solanine, respectively. The Sgt2 gene was identified by deduced protein sequence homology to the previously identified Sgt1 gene. SGT1 has glucosyltransferase activity in vitro, but in vivo serves as the UDP-galactose:solanidine galactosyltransferase. Two alleles of the Sgt2 gene were isolated and its function was established with antisense transgenic lines and in vitro assays of recombinant protein. In tubers of transgenic potato (Solanum tuberosum) cvs. Lenape and Desirée expressing an antisense Sgt2 gene construct, accumulation of alpha-solanine was increased and alpha-chaconine was reduced. Studies with recombinant SGT2 protein purified from yeast show that SGT2 glycosylation activity is highly specific for UDP-glucose as a sugar donor. This data establishes the function of the gene product (SGT2), as the primary UDP-glucose:solanidine glucosyltransferase in vivo.


Asunto(s)
Alcaloides/metabolismo , Glucosiltransferasas/metabolismo , Solanum tuberosum/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , ADN Complementario , Glucosiltransferasas/química , Glucosiltransferasas/genética , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA